MUDDY RUN II STREAM AND WETLAND RESTORATION PROJECT MONITORING REPORT MONITORING YEAR 6

FINAL

DUPLIN COUNTY, NORTH CAROLINA
DMS CONTRACT NO. 004631 – DMS PROJECT NO. 95354
SAW-2011-02191
DWR 2013-0653

Prepared for:

Division of Mitigation Services

North Carolina Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

January 2020

 Mitigation Project Name
 Muddy Run II Site
 County
 Duplin
 USACE Action ID
 2012-01387

 DMS ID
 95354
 Date Project Instituted
 8/1/2012
 NCDWR Permit No
 2013-0653

River Basin Cape Fear Date Prepared 6/13/2019
Cataloging Unit 03030007

			Strea	m Credits			Wetland Credits							
Credit Release Milestone	Scheduled Releases	Warm	Cool	Cold	Anticipated Release Year	Actual Release Date	Scheduled Releases	Riparian Riverine	Riparian Non- riverine	Non-riparian	Scheduled Releases	Coastal	Anticipated Release Year	Actual Release Date
Potential Credits (Mitigation Plan)	(Stream)	10,485.530			(Stream)	(Stream)	(Forested)	4.920			(Coastal)		(Wetland)	(Wetland)
Potential Credits (As-Built Survey)	(0.000)	10,738.800			(======,	(0.0.00)	(* ************************************	4.920			((Totalia)	(**************************************
1 (Site Establishment)	N/A				N/A	N/A	N/A				N/A		N/A	N/A
2 (Year 0 / As-Built)	30%	3,221.640			2014	10/3/2014	30%	1.476			30%		2014	10/3/2014
3 (Year 1 Monitoring)	10%	1,073.880			2015	4/23/2015	10%	0.492			10%		2015	4/23/2015
4 (Year 2 Monitoring)	10%	1,073.880			2016	4/26/2016	10%	0.492			15%		2016	4/26/2016
5 (Year 3 Monitoring)	10%	1,073.880			2017	10/20/2017	15%	0.738			20%		2017	10/20/2017
6 (Year 4 Monitoring)	5%	536.940			2018	4/25/2018	5%	0.246			10%		2018	4/25/2018
7 (Year 5 Monitoring)	10%	1,073.880			2019	4/26/2019	15%	0.738			15%		2019	4/26/2019
8 (Year 6 Monitoring)	5%				2020		5%				N/A		2020	
9 (Year 7 Monitoring)	10%				2021		10%				N/A		2021	
Stream Bankfull Standard	10%	1,073.880			2016	4/26/2016	N/A				N/A			
Total Credits Released to Date		9,127.980						4.182						

	ΓES:

		IFS:

Vollet & Tomas	27 Sept 2019
Signature of Wilmington District Official Approving Credit Release	Date

- 1 For DMS, no credits are released during the first milestone
- 2 For DMS projects, the second credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the NCIRT by posting it to the NCEEP Portal, provided the following criteria have been met:
 - 1) Approval of the final Mitigation Plan
 - 2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property
 - 3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan
 - 4) Reciept of necessary DA permit authorization or written DA approval for porjects where DA permit issuance is not required
- 3 A 10% reserve of credits is to be held back until the bankfull event performance standard has been met

Mitigation Project Name DMS ID River Basin Muddy Run II Site 95354 Cape Fear 03030007 County Date Project Instituted Date Prepared USACE Action ID 201 NCDWR Permit No 201

2012-01387 2013-0653

DEBITS (released credits only)

Cataloging Unit

Ratios	1	1.5	2.5	5	1	3	2	5	1	3	2	5	1	3	2	5
	Stream Restoration	Stream Enhancment I	Stream Enhancement II	Stream Preservation	Riparian Restoration	Riparian Creation	Riparian Enhancement	Riparian Preservation	Nonriparian Restoration	Nonriparian Creation	Nonriparian Enhancement	Nonriparian Preservation	Coastal Marsh Restoration	Coastal Marsh Creation	Coastal Marsh Enhancement	Coastal Marsh Preservation
As-Built Amounts (feet and acres)	9,976.000	708.000	727.000		4.920											
As-Built Amounts (mitigation credits)	9,976.000	472.000	290.800		4.920											
Percentage Released	85%	85%	85%		85%											
Released Amounts (feet / acres)	8,479.600	601.800	617.950		4.182											
Released Amounts (credits)	8,479.600	401.200	247.180		4.182											
NCDWR Permit USACE Action ID Project Name																
NCDOT TIP R-2405A - I-40 2000-1426 1994-03620 Connector Porters Neck	71.000															
2007-1158 2004-01067 Parson's Mill	297.000															
North New Hanover 10-inch 2007-02785 Pipeline	12.000															
2008-0815 2008-01284 Olsen Farm Project Park	149.000															
ILM Security Fence 2008-1167 2010-00280 Wilmington Airport	214.000															
GE-Hitachi Global Laser 2008-00188 Enrichment Facility	158.000															
2013-1263 2011-00455 ILM Runway 24 Critical Area	1,069.000															
2015-0072 2014-01310 The Reserve on Island Creek	24.000															
Remaining Amounts (feet / acres)	6,485.600	601.800	617.950		4.182											
Remaining Amounts (credits)	6,485.600	401.200	247.180		4.182											

Duplin 8/1/2012

6/13/2019

Corporate Headquarters

6575 West Loop South, Suite 300 Bellaire, TX 77401 Main: 713.520.5400

January 30, 2020

Lindsay Crocker NC DEQ Division of Mitigation Services 217 West Jones Street Raleigh, NC 27604

RE: Muddy Run II Stream and Wetland Restoration Site: MY6 Monitoring Report (NCDMS ID 95354)

Listed below are comments provided by DMS on December 23, 2019 regarding the Muddy Run II Stream and Wetland Restoration Site: Year 6 Monitoring Report and RES' responses.

- 1. **Table 1.** Remove ** footnote about contracted site credits. This footnote has been removed.
- 2. **Table 8.** Update spelling of easement. If there was a small encroachment, please document in the monitoring results section and include size of area, and how it was resolved. The spelling of "easement" has been corrected. A description of the encroachment on Reach 5b has been documented in Section 4.2 of the monitoring report.
- 3. **Vegetation table**. The stem densities for MY4 and MY5 appear very high when including volunteers. Is there a minimum height set for counting volunteers? Check that this is accurate. The minimum height for recordable volunteer species is 10cm; however, the majority of these seedlings end up getting shaded out due to light competition with planted stems and other vegetation.
- 4. **Section 5.1.5.** Wetland Hydrology. It may be useful to describe that the 2018-19 antecedent rain was low, and that the rainfall for the year was consistently below 30% of the normal rainfall as shown in Table 14.

A sentence has been added to Section 5.1.5 addressing the low rainfall levels throughout the 2018-19 season.

5. **Table 9a.** Header. Update to say MY6 or remove reference to MY5. The header to the table has been updated to reflect MY6.

Muddy Run II Duplin County, North Carolina DMS Project ID 95354

Cape Fear River Basin HUC 0030007060010

Prepared by:

Resource Environmental Solutions, LLC 302 Jefferson Street, Suite 110 Raleigh, NC 27605 919-209-1061

TABLE OF CONTENTS 1 PROJECT GOALS, BACKGROUND AND ATTRIBUTES...... 1 2.3 Scheduling/Reporting......8 3.1.1 As-Built Survey......8

Appendix A. Project Background Data and Maps

Table 1. Project Components and Mitigation Credits

Table 2. Project Activity and reporting History

Table 3. Project Contacts

Table 4. Project Information and Attributes

Figure 1. Project Vicinity Map

Figure 2. Project USGS Map

Appendix B. Visual Assessment Data

Figure 3a-c. Current Conditions Plan View Map (CCPV)

Table 5. Visual Stream Morphology Stability Assessment

Table 6. Vegetation Condition Assessment

Table 7. Stream Problem Areas

Table 8. Vegetation Problem Areas

Figure 4. Vegetation Photos

Figure 5. Stream and Vegetation Problem Photos

Appendix C. Vegetation Plot Data

Table 9a. Planted Stem Count Summary

Table 9b. Planted Species Totals

Table 9c. Planted Stem Counts (Species by Plot)

Appendix D. Stream Geomorphology Data

Cross Section 52-54 Plots

Appendix E. Hydrology Data

Table 13. Documentation of Geomorphologically Significant Flow Events

Table 14. Rainfall Summary

Table 15a. Wetland Hydrology Criteria Attainment

Table 15b. MY1-MY6 Wetland Hydrology Gauges Summary

2019 Groundwater Monitoring Gauge Hydrographs

Figure 6. Crest Gauge Verification Photos

1 PROJECT GOALS, BACKGROUND AND ATTRIBUTES

1.1 Location and Setting

The Muddy Run Stream Site ("Site") is located in Duplin County approximately 1.4 miles east of Chinquapin, NC (Figure 1). The project is in the Cape Fear River Basin (8-digit USGS HUC 03030007, 14-digit USGS HUC 03030007060010) (USGS, 1998) and the NCDWQ Cape Fear 03-06-22 sub-basin (NCDWQ, 2002). To access the Site from the town of Chinquapin, travel east on Highway 50, take the first left onto Pickett Bay Road (SR 1819), go 1.1 miles, then turn left onto Kenney Crawley Road. This private road is gravel and will split just past the residential house on the right. Keeping to the left will take you to the Reaches 3b, 3c, 5b, and 6. Going to the right at the split will take you to Reaches 1, 2, 3a, and 4.

1.2 Project Goals and Objectives

The Muddy Run II stream and wetland mitigation project provides numerous ecological and water quality benefits within the Cape Fear River Basin. While many of these benefits are limited to the project area, others, such as pollutant removal and improved aquatic and terrestrial habitat, have more far-reaching effects. Expected improvements to water quality, hydrology, and habitat are outlined below.

Design Goals and Objectives

Design Goals and Ob							
	Benefits Related to Water Quality						
Nutrient removal	Benefit will be achieved through filtering of runoff from adjacent CAFOs through buffer areas, the conversion of active farm fields to forested buffers, improved denitrification and nutrient uptake through buffer zones, and installation of BMPs at the headwaters of selected reaches and ditch outlets.						
Sediment removal	Benefit will be achieved through the stabilization of eroding stream banks and reduction of sediment loss from field areas due to lack of vegetative cover. Channel velocities will also be decreased through a reduction in slope, therefore decreasing erosive forces.						
Increase dissolved oxygen concentration	Benefit will be achieved through the construction of instream structures to increase turbulence and dissolved oxygen concentrations and riparian canopy restoration to lower water temperature to increase dissolved oxygen capacity.						
Runoff filtration	Benefit will be achieved through the restoration of buffer areas that will receive and filter runoff, thereby reducing nutrients and sediment concentrations reaching water bodies downstream.						
Benefits to Flood Attenuation							
Water storage	Benefit will be achieved through the restoration of buffer areas which will infiltrate more water during precipitation events than under current site conditions.						
Improved groundwater recharge	Benefit will be achieved through the increased storage of precipitation in buffer areas, ephemeral depressions, and reconnection of existing floodplain. Greater storage of water will lead to improved infiltration and groundwater recharge.						
Improved/restored hydrologic connections	Benefit will be achieved by restoring the stream to a natural meandering pattern with an appropriately sized channel, such that the channel's floodplain will be flooded more frequently at flows greater than the bankfull stage.						
	Benefits Related to Ecological Processes						
Restoration of habitats	Benefit will be achieved by restoring riparian buffer habitat to appropriate bottomland hardwood ecosystem.						
Improved substrate and instream cover	Benefit will be achieved through the construction of instream structures designed to improve bedform diversity and to trap detritus. Stream will be designed with the appropriate channel dimension and will prevent aggradation and sedimentation within the channel. Substrate will become coarser as a result of the stabilization of stream banks and an overall decrease in the amount fine materials deposited in the stream.						

Addition of large woody debris	Benefit will be achieved through the addition of wood structures as part of the restoration design. Such structures may include log vanes, root wads, and log weirs.
Reduced temperature of water due to shading	Benefit will be achieved through the restoration of canopy tree species to the stream buffer areas.
Restoration of terrestrial habitat	Benefit will be achieved through the restoration of riparian buffer bottomland hardwood habitats.

1.3 Project Structure

Following 2016 monitoring the NCIRT requested a review of the differential between the Approved Mitigation Plan and Baseline Monitoring Report. The table below details the discrepancies by reach. The primary cause of the 5% increase in baseline SMUs is survey methodology (thalweg vs. centerline). The Mitigation Plan lengths were based on centerline. Wetland credits are unchanged from Mitigation Plan to Baseline Monitoring Report.

Table 1. Muddy Run II Project Components – Stream Mitigation

Reach	Mitigation Type	Proposed Length (LF)*	Mitigation Ratio	Proposed SMUs	Baseline SMUs
Reach 1	Headwater Valley	401	1:1	401	398
Reach 2	Headwater Valley	504	1:1	504	504
Reach 2	P1 Restoration	1,369	1:1	1,369	1,410
Reach 3a	P1 Restoration	3,440	1:1	3,440	3,586
Reach 3b	P1 Restoration	1,852	1:1	1,852	1,979
Reach 3c	Enhancement I	707	1:1.5	471	472
Reach 4	P1 Restoration	172	1:1	172	173
Reach 5a	P1 Restoration	1,774	1:1	1,774	1,926
Reach 5b	Enhancement II	401	1:2.5	160	164
Reach 6	Enhancement II	317	1:2.5	127	127
	Total	11,411		10,270	10,739

^{*}The proposed lengths represent the total proposed channel length minus the length of the proposed channel associated with crossings (easement breaks).

Table 2. Muddy Run II Project Components – Wetland Mitigation

Wetland	Mitigation Type	Mitigation Area (ac)	Mitigation Ratio	WMUs
WA	Restoration	3.60	1:1	3.60
WB	Restoration	1.32	1:1	1.32
	Total	4.92		4.92

1.3.1 Restoration Type and Approach

Reach 1

Headwater valley restoration approach was performed along Reach 1. The existing channel/ditch was backfilled, and flow has been directed from its current position along the tree line back to within the historic valley location down to the confluence with Reaches 2 and 3a. A 100-foot-wide forested buffer has been planted throughout the reach. The upstream limit of Reach 1 ties into an existing headwater valley system comprised of intermittent sections of single and multiple channels. This system will be

used as a reference site for incorporating a small baseflow channel into the headwater valley restoration design.

Reach 2

Similar to Reach 1, headwater valley restoration was performed along the upper section of Reach 2. The existing channel was backfilled with existing spoil material located along the channel, a result of previous dredging activities. Areas within the 100 foot buffer that were disturbed or lack riparian vegetation were planted. Grade control structures were installed along three ditches that enter Reach 2 at the upstream end of the project. These structures raised the upstream channel bed elevations slightly to tie into existing ditches to the project reach. An existing CMP culvert located along the upstream section was removed and replaced outside the easement (upstream) to continue to allow the landowner access to all areas of his property. Priority 1 restoration was performed for the majority of Reach 2. Restoration activities involved relocating the channel to the north through an existing wooded area consisting primarily of pines and a few hardwoods. Existing spoil piles located along the channel banks were removed and used to fill the existing ditch. Diffuse flow structures have been installed along several ditches that outlet to the reach from both the north and south. The structures will attenuate and disperse flows as the existing ditches enter the proposed easement.

Reach 3a

Priority Level I restoration was performed on Reach 3a. The restoration approach on this reach included relocating the channel on either side of its current location to follow the natural valley and removing the adjacent roadbed to allow continuous access to the floodplain. Two existing 36" CMP culvert crossings were located along this reach. Each culvert was removed and replaced in-line with the proposed stream to allow the landowners to access portions of their respective properties to the west of the project site. Reach 3a now flows in a northwesterly direction until it reaches a property line. At this point, the existing ditch that continued to flow in a northerly direction was plugged and a diversion structure was installed. The structure is designed to pass 100 percent of baseflow and small storms through the project, and divert up to 70 percent of storms larger than the 25-yr storm to the existing ditch and offsite. See Section 7.3.1.1 (Stream Hydrologic Analysis) for hydraulic analysis details.

Just downstream of the diversion structure, the channel was relocated south of several turkey houses, and now flows in a westerly direction as Reach 3b. The network of ditches surrounding the turkey houses appear to cross a small ridge, directing flow away from the project area. An additional culvert crossing was constructed where flow will be diverted to the west at the turkey houses. Priority I restoration is appropriate for this channel because it is the only mitigation approach that addresses bed and bank instability, establishes a forested riparian buffer, and significantly enhances aquatic habitat. Diffuse flow structures were constructed where existing agricultural ditches enter the easement area.

The diversion structure was constructed at the downstream end of Reach 3a to alleviate and prevent flooding caused by rerouting flow and increased drainage areas, to provide continued flow through the existing ditch for storms larger than bankfull (design) events, and to reduce impacts from proposed grading activities. Per discussions with Mr. Lanier (owner of parcel northwest of proposed structure), larger storm events overtop the existing ditch flowing to the north. This flooding may be attributed to inefficiencies with existing structures and ditch alignments in conjunction with low gradients. The culvert associated with the gravel access road that leads from Ludie Brown Road to the turkey houses outlets perpendicular to the receiving ditch that flows to the northeast and under Ludie Brown Road. This ditch continues to the northeast and crosses Route 111, where it flows to the north into Muddy Creek. By diverting up to 70 percent of higher flows through the existing ditch and offsite, existing flooding issues will be reduced adjacent to the turkey houses. This diversion also decreases potential flooding impacts that would occur if 100 percent of storm events were passed through the proposed channel, Reach 3b. There are several residential parcels within zero to 200 feet of the proposed

easement along Reach 3b. Because the topography is very flat through this area, the flooding associated with the majority of storm events greater than bankfull would negatively impact these parcels.

Finally, by diverting a percentage of the proposed higher flows, flooding impacts will also be reduced along Reaches 5a and 5b and at the existing HWY 41 culvert at the downstream end of the project. Currently, agricultural fields are present along the north side of Reach 5a. By reducing high flows, the flooding extent and duration will be reduced; thus, preventing adverse impacts to crops. If 100 percent of higher storm events were allowed to pass through the project, significant grading would be required to cut floodplain terraces/benches to relieve flooding of the adjacent agricultural fields.

Approximately 1,611 LF of the existing ditch that flows to the north from the Reach 3a/3b diversion structure will be impacted (dewatered). This length includes the segment of the ditch from the diversion structure downstream to the Muddy Creek floodplain. The channel impacts resulting from the proposed channel relocation will be addressed in the ensuing NWP application.

Reach 3b

Priority Level I restoration was performed on Reach 3b. The restoration approach on this reach included relocating the channel in a westerly direction through an open pasture. The pasture area has been extensively modified and substantial grading was required. The design then moves the channel to a historic drainage way as observed on LiDAR and historical aerial photographs. The flow path is now connected to a small relic channel identified in the forested area west of the pasture. Subsequent topographic survey confirmed positive drainage along the relic channel which follows a low-lying feature observed on LiDAR. The restoration approach included some minor grading to enlarge the existing channel and to create a diverse bed habitat by constructing pools. Log grade control structures were installed at the confluence with Reach 3c and at the connection to the relic channel. Small, mechanical equipment and hand tools were used to minimize damage to the existing forested buffer. A livestock protected culvert crossing was constructed near the existing pasture along an existing farm path to allow the landowner uninterrupted access to his property.

Reach 3c

Enhancement I was performed on Reach 3c as it flows through a forested area downstream from Reach 3b to Reach 3 of the Muddy Run Stream Mitigation Project. A grade control structure was installed at the upstream end to stabilize the transition from an existing agricultural ditch to the stable channel. A crossing was constructed along the upper section to allow the landowner access to both sides of his property. Enhancement activities included removing portions of existing spoil piles located along top of banks, cutting floodplain benches and laying back banks, and installing woody debris habitat structures. Diffuse flow structures were also constructed at the downstream limit where existing agricultural ditches enter the easement area. Invasive species management was performed throughout the buffer, and any bare or disturbed areas were planted with native riparian vegetation.

Reach 4

Priority 1 restoration was performed on the downstream end of Reach 4 as it flows through a forested area below a ditch draining an agricultural field. A grade control structure was installed at the upstream end to transition from the existing ditch to a stable channel. The lower section of the reach was constructed into an E-type channel before its confluence with Reach 3a. Invasive species management was performed throughout the buffer, and any bare or disturbed areas were planted with native riparian vegetation.

Reach 5a

Priority Level I restoration was performed on Reach 5a. The channel was relocated north of its current location into the adjacent agricultural field. The existing ditch was backfilled and plugged at any

locations that may cross the proposed channel. The upstream end of the reach ties into Reach 1C of the Muddy Run Stream Mitigation Project. The single-thread channel flows through proposed wetland WB beginning approximately 300 feet downstream of the Muddy Run project. A CMP culvert crossing was installed in-line with the proposed design near the middle of the reach to allow the landowners access to the adjacent parcels. Priority I restoration is appropriate for this channel because it is the only mitigation approach that addresses bed and bank instability, establishes a forested riparian buffer, and significantly enhances aquatic habitat.

Reach 5b

Enhancement Level II was performed on Reach 5b. Several log grade controls and woody debris structures were installed along the bed to increase aquatic habitat and bed diversity. The right bank along the reach was laid back and spoil piles along the tops of banks were removed using small equipment to minimize impacts to the existing buffer. Additionally, invasive species management was performed throughout the buffer, and any bare or disturbed areas were planted with native riparian vegetation.

Reach 6

Enhancement Level II was performed on the downstream section of Reach 6 (STA 9+02 to STA 12+19). The right and left banks were laid back, and the channel was backfilled using spoil located adjacent to the channel such that positive drainage is maintained throughout the reach down to the confluence with Reach 5a. Invasive species management was performed throughout the buffer where enhancement took place, and any bare or disturbed areas were planted with native riparian vegetation. A 50-foot-wide buffer was provided along the upper section of Reach 6 (STA 0+00 to STA 9+02); however, no enhancement activities were performed through this section other than filling portions of the channel. This additional easement was provided to account for any hydrologic impacts that may occur as a result of the proposed enhancement activities.

1.4 Project History, Contacts and Attribute Data

1.4.1 Project History

The Site was restored by Environmental Banc & Exchange, LLC (EBX) through a full-delivery contract awarded by NCDMS in 2011. EBX was acquired by Resource Environmental Solutions, LLC (RES) in 2014 and now oversees the project tasks. Tables 2, 3, and 4 in **Appendix A** provide a time sequence and information pertaining to the project activities, history, contacts, and baseline information.

1.4.2 Project Watersheds

The easement totals 37.6 acres and is broken into nine reaches. Reach 1 has a drainage area of 68 acres; it begins at the start of the restoration project (STA 0+00) and extends west to STA 4+48. Reach 2 has a drainage area of 114 acres; it begins at STA 0+00 and extends to STA 19+14. Reach 3a (Sta. 0+00 to 37+23) begins at the confluence of Reaches 1 and 2 and has a drainage area of 227 acres. Reach 3b has a drainage area of 333 acres and flows west into Reach 3c; it begins at STA 37+23 and extends to STA 57+92. Reach 3c has a drainage area of 370 acres extending north to south and flows into Reach 3 of the Muddy Run project; it begins at STA 57+92 and extends to STA 65+30. Reach 4 has a drainage area of 46 acres and flows from the east into Reach 3a; it begins at STA 0+44 and extends to STA STA 2+17. Reach 5a begins at the downstream limit of the Muddy Run project, flows into Reach 5b, and has a drainage area of 774 acres; it begins at STA 0+00 and extends to STA 19+59. Reach 5b has a drainage area of 908 acres; it starts at STA 19+59 and extends to STA 23+68. Reach 6 has a drainage area of 318 acres and flows from the south into Reach 5a; it starts at STA 9+02 and extends to STA 12+19 (**Figure 2**). The land use in the project watershed is approximately 38 percent cultivated, 32

percent evergreen forest, 15 percent shrub/scrub, 6 percent bottomland forest/hardwood swamp, 5 percent mixed forest, 2 percent developed, and 2 percent managed herbaceous cover.

2 Success Criteria

The success criteria for the Site stream restoration was assembled from the NCDMS Monitoring Requirements and Performance Standards Guidance for Stream and-or Wetland Mitigation (11/07/2011). Specific success criteria components are presented below.

2.1 Stream Restoration

2.1.1 Bankfull Events

Two bankfull flow events must be documented within the seven-year monitoring period. The two bankfull events must occur in separate years. Otherwise, the stream monitoring will continue until two bankfull events have been documented in separate years. Bankfull events will be documented using stage recorders, photographs, and visual assessments for evidence of debris rack lines.

2.1.2 Cross Sections

There should be little change in as-built cross-sections. If changes do take place, they should be evaluated to determine if they represent a movement toward a less stable condition (for example down-cutting or erosion), or are minor changes that represent an increase in stability (for example settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). Cross-sections are classified using the Rosgen stream classification method, and all monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type.

2.1.3 Digital Image Stations

Digital images are used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures. Longitudinal images should not indicate the absence of developing bars within the channel or an excessive increase in channel depth. Lateral images should not indicate excessive erosion or continuing degradation of the banks over time. A series of images over time should indicate successional maturation of riparian vegetation.

2.2 Wetland Restoration

At the time of the development of mitigation plan, the NRCS did not have a current WETs table for Duplin County upon which to base a normal rainfall amount and average growing season. The closest comparable data was determined to be from Sampson County. The growing season for Sampson County is 242 days long, extending from March 17 to November 14, and is based on a daily minimum temperature greater than 28 degrees Fahrenheit occurring in five of ten years.

Because of the surface roughing and shallow depressions, a range of hydroperiods are expected. The water balance indicates that the site will have a positive water balance in the early part of the growing season for four to five weeks, on average. The hydrology success criterion for the site is to restore the water table at the Site so that it will remain continuously within 12 inches of the soil surface for at least nine percent of the growing season (approximately 22 days) at each groundwater gauge location during normal rainfall years. Overbank flooding events will provide additional inputs that may extend the hydroperiod in some years.

Gauge data will be compared to reference wetland well data in growing seasons with less than normal rainfall. In periods of low rainfall, if a restoration gauge hydroperiod exceeds the reference gauge hydroperiod, and both exceed five percent of the growing season, then the gauge will be deemed successful. If a gauge location fails to meet these success criteria in the seven-year monitoring period, then monitoring may be extended, remedial actions may be undertaken, or the limits of wetland restoration will be determined.

2.3 Vegetation

Specific and measurable success criteria for plant density within the riparian buffers on the site will follow NCDMS Guidance. Vegetation monitoring plots are 0.02 acres in size, and cover greater than two percent of the planted area. Vegetation monitoring will occur annually in the fall of each year. The interim measures of vegetative success for the site will be the survival of at least 320 three-year-old trees per acre at the end of Year 3, 260 trees per acre at the end of Year 5, and the final vegetative success criteria will be 210 trees per acre at the end of Year 7. Invasive species on the site will be monitored and treated if necessary throughout the required vegetation monitoring period.

2.4 Scheduling/Reporting

The monitoring program will be implemented to document system development and progress toward achieving the success criteria. The restored stream morphology will be assessed to determine the success of the mitigation. The monitoring program will be undertaken for seven years or until the final success criteria are achieved, whichever is longer.

Monitoring reports will be prepared in the fall of each year of monitoring and submitted to NCDMS. The monitoring reports will include all information, and will be in the format required by NCDMS in Version 2.0 of the NCDMS Monitoring Report Template.

3 MONITORING PLAN

Annual monitoring data will be reported using the NCDMS monitoring template. Annual monitoring shall be conducted for stream, wetland, and vegetation monitoring parameters as noted below.

3.1 Stream Restoration

3.1.1 As-Built Survey

An as-built survey was conducted following construction to document channel size, condition, and location. The survey included a complete profile of thalweg, water surface, bankfull, and top of bank to compare with future geomorphic data. Longitudinal profiles will not be required in annual monitoring reports unless requested by NCDMS or USACE.

3.1.2 Bankfull Events

Four sets of continuous stage recorders were installed on the site, one along Reach 2, one along Reach 3a, one along Reach 3b, and one along Reach 5a. The stage recorders are made up of an auto logging flow gauge and a manual crest gauge. Auto logging flow gauges were installed within the channel and continuously record water level conditions at an hourly interval. Manual crest gauges were installed on the bank at bankfull elevation and record bankfull height using ground cork. Crest gauges are checked during each site visit to determine if a bankfull event has occurred since the last site visit. The auto logging flow gauges are used to record the bankfull readings that the manual crest gauges miss. Crest gauge readings and debris rack lines are photographed to document evidence of bankfull events.

3.1.3 Cross Sections

A total of 59 permanent cross sections were installed to monitor channel dimensions and stability. Four cross sections were installed along Reach 1 and ten cross sections were installed along Reach 2. There were 21 cross sections (nine runs, nine pools, and three riffles) installed along Reach 3A and six cross sections installed along Reach 3B. Four cross sections were installed along Reach 3C and two cross sections were installed along Reach 4. Reach 5A had eight cross sections installed, while Reach 5B and 6 each had two cross sections installed. Cross sections were typically located at representative shallow and pool sections along each stream reach. Each cross section was permanently marked with 3/8 rebar pin to establish a monument location at each end. A marker pole was also installed at both ends of each cross section to allow ease locating during monitoring activities. Cross section surveys will be performed in monitoring years 1, 2, 3, 5, and 7 and will include all breaks in slope including top of bank, bottom of bank, streambed, edge of water, and thalweg. Cross sections 52-55 were monitored in Year 6 to provide additional data after the repair of this reach in Year 3.

3.1.4 Digital Image Stations

Digital photographs will be taken at least once a year to visually document stream and vegetation conditions. This monitoring practice will continue for seven years following construction and planting. Permanent photo point locations at cross sections and vegetation plots have been established so that the same directional view and location may be repeated each monitoring year. Monitoring photographs will also be used to document any stream and vegetation problematic areas such as erosion, stream and bank instability, easement encroachment and vegetation damage.

3.1.5 Bank Pin Arrays

Twenty bank pin arrays have been installed at cross sections located on meander pools. These bank pin arrays were installed along the upstream and downstream third of the meander. Bank pins are a minimum of three feet long, and have been installed just above the water surface and every two feet above the lowest pin. Bank pin exposure will be recorded at each monitoring event, and the exposed pin will be driven flush with the bank.

3.1.6 Visual Assessment Monitoring

Visual monitoring of all mitigation areas will be conducted a minimum of twice per monitoring year by qualified individuals. The visual assessments will include vegetation density, vigor, invasive species, and easement encroachments. Visual assessments of stream stability will include a complete stream walk and structure inspection. Digital images will be taken at fixed representative locations to record each monitoring event as well as any noted problem areas or areas of concern. Results of visual monitoring will be presented in a plan view exhibit with a brief description of problem areas and digital images. Photographs will be used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures. Longitudinal photos should indicate the absence of developing bars within the channel or an excessive increase in channel depth. Lateral photos should not indicate excessive erosion or continuing degradation of the banks over time. A series of photos over time should indicate successional maturation of riparian vegetation.

3.1.7 Surface Flow

Headwater valley restoration areas will be monitored to document intermittent or seasonal surface flow. This will be accomplished through direct observation, photo documentation of hydrology conditions, and dye tests if necessary.

3.2 Vegetation

A total of 28 vegetation plots were randomly established within the planted stream riparian buffer easement. Each vegetation plot measures 22 feet by 40 feet (0.02 acres) and has all four corners marked with PVC posts. Planted woody vegetation was assessed within each plot to establish a baseline dataset. Within each vegetation plot, each planted stem was identified for species, "X" and "Y" origin located, and measured for height. Reference digital photographs were also captured to document baseline conditions. Species composition, density, growth patterns, damaged stems, and survival ratios will be measured and reported on an annual basis. Vegetation plot data will be reported for each plot as well as an overall site average.

3.3 Wetland Hydrology

Wetland hydrology will be monitored to document hydric conditions in the wetland restoration areas. Seven automatic recording pressure transducer gauges were installed in representative locations across the restoration areas and an additional three gauges were installed in reference wetlands. The gauges will be downloaded quarterly and wetland hydroperiods will be calculated during the growing season. Gauge installation followed current regulatory and NCDMS guidance. Visual observations of primary and secondary wetland hydrology indicators will also be recorded during quarterly site visits.

4 MAINTENANCE AND CONTINGENCY PLAN

All identified problematic areas or areas of concern such as stream bank erosion/instability, aggradation/degradation, lack of targeted vegetation, and invasive/exotic species which prevent the site from meeting performance success criteria will be evaluated on a case by case basis. These areas will be documented and remedial actions will be discussed amongst NCDMS staff to determine a plan of action. If it is determined remedial action is required, a plan will be provided.

4.1 Stream

During the Year 6 monitoring activities, no stream problem areas were documented. The series of beaver dams on Reach 5A, that were reported in the Year 5 monitoring report, were removed in February 2019. No signs of beavers were observed during the October 2019 monitoring event.

4.2 Vegetation

Two vegetation problem areas were identified during monitoring Year 6 activities. The first, was a small fire that accidentally spread into the easement and the NC Forest Service had to use a fire plow to extinguish it. They created a small fire break (about 0.10 acres) along the right top of bank on Reach 5b (**Figure 3b**). The fire break was seeded and, as of January 2020, has complete herbaceous ground cover. The second, is a small (0.04 acre) area of encroachment where the farmer mistook an erroneous piece of rebar for an easement corner. RES will clearly mark the correct easement in this area and delineate it with horse tape and easement signs.

4.3 Wetlands

No wetland problem areas were noted during the Year 6 monitoring period. All pressure transducers were replaced prior to the 2019 growing season.

5 YEAR 6 MONITORING CONDITIONS (MY6)

The Muddy Run II Year 6 Monitoring activities were completed in July and October 2019. All Year 6 monitoring data is presented below and in the appendices. Data presented shows the site is on track to meet stream, wetland, and vegetation interim success criteria.

5.1 Year 6 Monitoring Data Collection

5.1.1 Morphological State of the Channel

Morphological stream data was only collected on Cross Sections 52, 53, 54, and 55 in Year 6 because this reach was rebuilt in Year 3. **Appendix D** includes the cross section plots and morphological parameters for this year.

Profile

The baseline (MY-0) profiles closely matched the proposed design profiles. The plotted longitudinal profiles can be found on the As-Built Drawings. Longitudinal profiles will not be performed in annual monitoring reports unless requested by NCDMS or USACE. Morphological summary data tables can be found in **Appendix D.**

Dimension

The Year 6 cross sectional dimensions for Cross Sections 52-55 closely matches the Year 3 cross section parameters. Cross section plots and data tables for these cross sections can be found in **Appendix D.**

Sediment Transport

The Year 6 conditions show that shear stress and velocities have been reduced for all six restoration reaches. Pre-construction conditions documented all six reaches as sand bed channels and remain classified as sand bed channels post-construction. Visual assessments (**Appendix B**) show the channels are transporting sediment as designed and will continue to be monitored for aggradation and degradation.

Bank Pin Arrays

Bank pin arrays were not monitored in Year 6 per the Approved Mitigation Plan.

5.1.2 Vegetation

The Year 6 monitoring vegetation survey was completed in October 2019 and resulted in an average of 613 planted stems per acre, well above the interim survival density of 210 stems per acre at the end of Year 7 monitoring. The average stems per vegetation plot was 12 planted stems. The minimum planted stems per plot was 8 stems and the maximum was 20 stems per plot. The average planted stem height was 9.7 feet. Volunteer tree species were noted throughout the site during MY6 activities. Abundant herbaceous ground cover may have prevented the observance of these species in previous monitoring years. Vegetation summary data tables and plot photos can be found in **Appendix C**.

5.1.3 Photo Documentation

Permanent photo point locations have been established at cross sections, vegetation plots, stream crossings, and stream structures by RES staff. Any additional problem areas or areas of concern will also be documented with a digital photograph during monitoring activities. Stream digital photographs can be found in **Appendix B** and **Appendix C** for vegetation photos.

5.1.4 Stream Hydrology

Four sets of continuous stage recorders were installed on the site, one along Reach 2, one along Reach 3a, one along Reach 3b, and one along Reach 5b. Two of the four stage recorders documented bankfull events during the Year 6 monitoring period. Stage Recorder 2, which is located on Reach 3a, documented 1 bankfull event during MY6 with a highest reading of 0.63 feet. Stage Recorder 4 (Reach 5b) logged 5 bankfull events during MY6 with a reading of 2.4 feet above bankfull elevation. Stage recorder summary data and photo documentation of the bankfull events can be found in **Appendix D**.

5.1.5 Wetland Hydrology

Six of the seven wetland restoration gauges achieved the success criteria by remaining continuously within 12 inches of the soil surface for at least nine percent of the growing season. AW7 fell below the success criteria with a five percent hydroperiod. Groundwater gauge data indicates the hydroperiods being very responsive to rainfall events. Prior to the 2018-19 growing season, rainfall levels were low and continued to fall consistently below 30% of the normal rainfall levels throughout the year (**Table 14**). Of the three reference wetlands gauges, only one (RAW1) met success criteria in MY5. RAW2 and RAW3 had three and six percent hydroperiods, respectively. All pressure transducers were replaced prior to the 2019 growing season. Wetland gauge and rainfall data is presented in **Appendix D**.

6 REFERENCES

Chow, Ven Te. 1959. Open-Channel Hydraulics, McGraw-Hill, New York.

Cowardin, L.M., V. Carter, F.C. Golet and E.T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service, Office of Biological Services, FWS/OBS-79/31. U.S. Department of the Interior, Washington, DC. Environmental Banc & Exchange (2012). Muddy Run Stream Restoration Project Final Mitigation Plan. North Carolina Ecosystems Enhancement Program, Raleigh, NC.

Horton, J. Wright Jr. and Victor A. Zullo. 1991. The Geology of the Carolinas, Carolina Geological Society Fiftieth Anniversary Volume. The University of Tennessee Press. Knoxville, TN.

Johnson PA. 2006. Assessing stream channel stability at bridges in physiographic regions. U.S. Department of Transportation. Federal Highway Administration. Report Number FHWA-HRT-05-072.

Krstolic, J.L., and Chaplin, J.J. 2007. Bankfull regional curves for streams in the non-urban, non-tidal Coastal Plain Physiographic Province, Virginia and Maryland: U.S. Geological Survey Scientific Investigations Report 2007-5162, 48 p.

LeGrand, H.E., Jr. and S.P. Hall, eds. 1999. Natural Heritage Program List of the Rare Animal Species of North Carolina. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.

Natural Resources Conservation Service (NRCS). 2007. Stream Restoration Design Handbook (NEH 654), USDA

NCDENR. "Water Quality Stream Classifications for Streams in North Carolina." Water Quality Section. http://h2o.enr.state.nc.us/wqhome/html (June 2005).

Radford, A.E., H.E. Ahles and F.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. The University of North Carolina Press, Chapel Hill, North Carolina.

Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDENR, Raleigh, NC.

Sweet, William V. and Jens W. Geratz. 2003. Bankfull Hydraulic Geometry Relationships and Recurrence Intervals for North Carolina's Coastal Plain. J. of the American Water Resources Association (JAWRA) 39(4):861-871.

Tweedy, K. A Methodology for Predicting Channel Form in Coastal Plain Headwater Systems. Stream Restoration in the Southeast: Advancing the Science and Practice, November 2008, Asheville, NC. Unpublished Conference Paper, 2008.

http://www.bae.ncsu.edu/programs/extension/wqg/srp/2008conference/tweedy_paper.pdf

Appendix A

Project Background Data and Maps

Table 1. Project Components and Mitigation Credits

Table 2. Project Activity and reporting History

Table 3. Project Contacts

Table 4. Project Information and Attributes

Figure 1. Project Vicinity Map

Figure 2. Project USGS Map

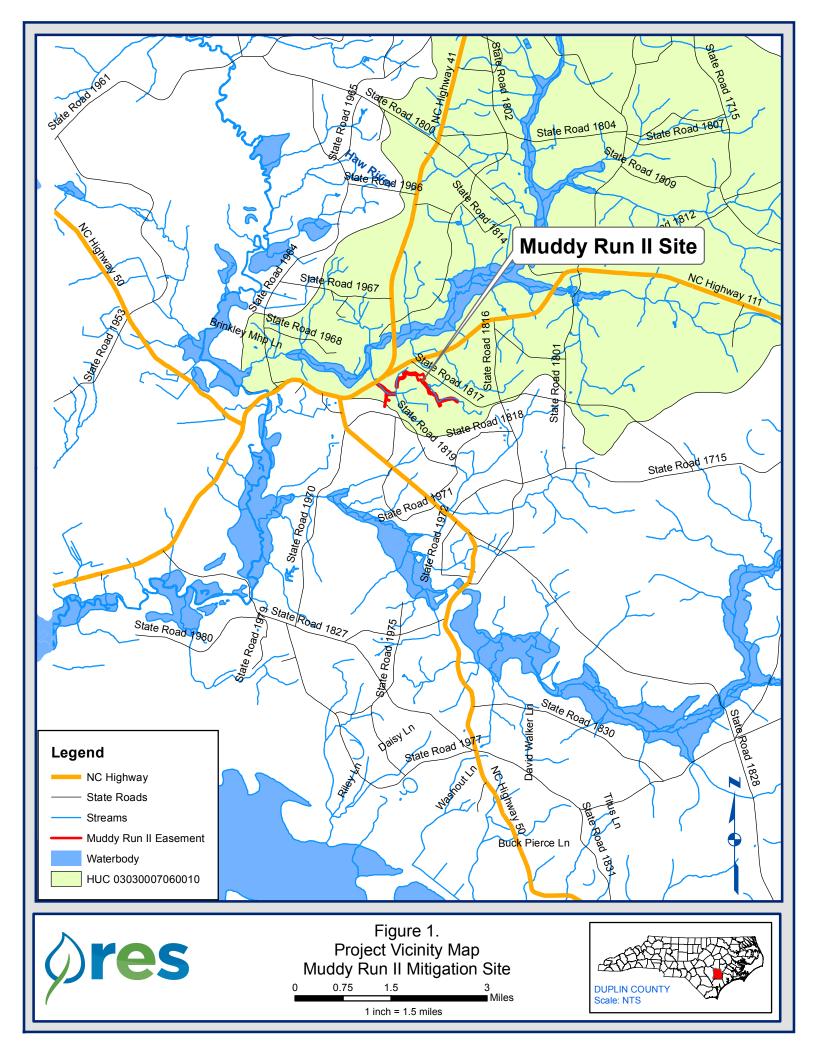
Appendix A. General Tables and Figures Table 1 Project Components and Mitigation Credits Monitoring Report Year 6

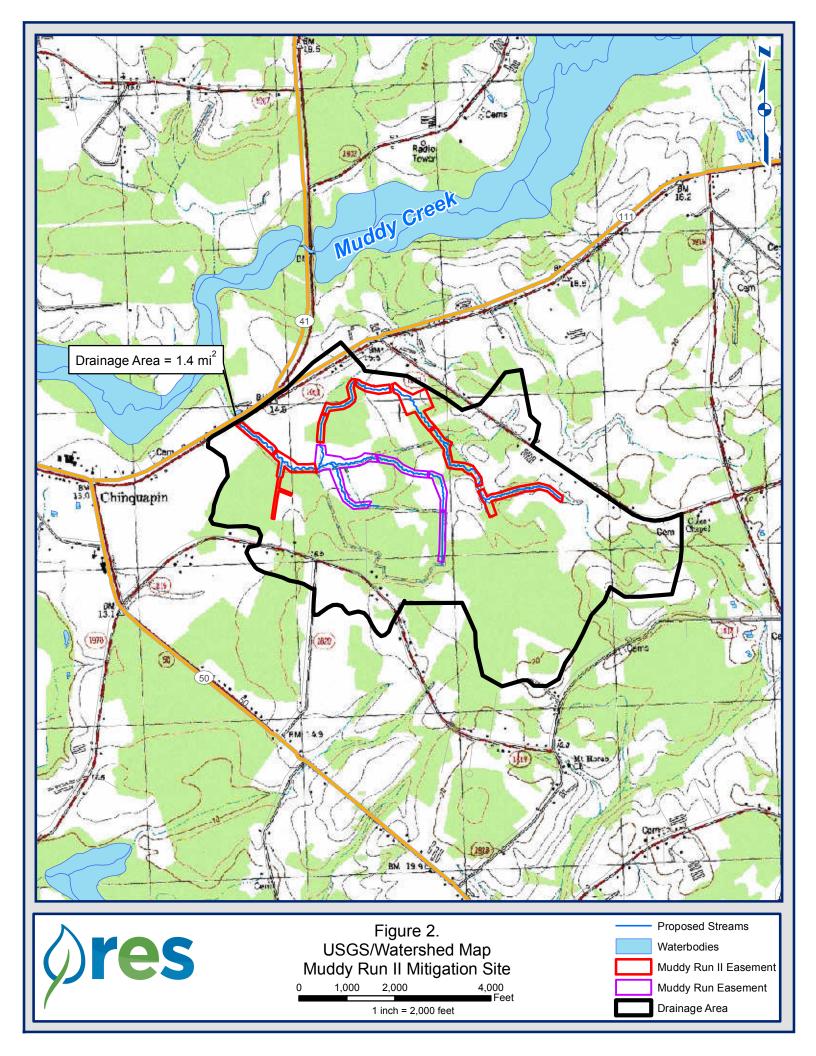
			1 able	1. Proj 	ect Comp Cre		nts and	u Mitig	gation				
					Mitigation	ı Cre	dits						
	Stream		Riparian	Wetland	Non-ripa	Non-riparian W		В	uffer	Nitrogen Nutrient Offset		Phosphorous Nutrient Offset	
Туре	R	RE	R	RE	R		RE						
Totals	10,739		4.92	N/A	N/A		N/A		N/A		N/A	N/A	
					Project Co	mpon	ents						
Project Component	-or- Reach ID	Stat	As-Buil ioning/Loca	-	Existin Footage/Ac			oroach PII etc.)	Restoration - Restoration Equivalen	n	Restoration Footage or Acreage	Mitigation Rat	
Reach	1		0+00 - 4+	-48	438		Н	WV	Restoration	n	398	1:1	
Reach	2		0+00 - 5+	04	504		Н	WV	Restoration	n	504	1:1	
Reach	2		5+04 – 19-	+14	1,223]	P1	Restoration	n	1,410	1:1	
Reach 3A		0+00 - 37+23			3,301]	P1 Restorati		on 3,586		1:1	
Reach 3B		37+23 - 57+92			NA	NA		P1	Restoration	n	1,979	1:1	
Reach 3C		57+92 - 65+30			737	737		nh. I	Rest. Equiva	lent	708	1:1.5	
Reach 4			0+44 – 2+	17	120]	P1	Restoration	n	173	1:1	
Reach 5A			0+00 – 19-	+59	1,602]	P1	Restoration	n	1,926	1:1	
Reach 5B		19+59 – 23+68			401		En	ıh. II	Rest. Equiva		409	1:2.5	
Reach	5*	9+02 – 12+19		317	317		ıh. II	Rest. Equiva	lent	318	1:2.5		
					Component	Summ	ation						
Restoration Level	Stream (linear fe		F	Riparian Wetland Non-						ffer e feet))	Upland (acres)	
			Rive	erine	Non-Riverine								
Restoration	9,074		4.	92									
Headwater Valley	902												
Enhancement													
Enhancement I	708												
Enhancement II	727												
Creation													
Preservation High Quality Preservation													
					BN	1P							
Element	Location		Purpo	se/Functio	on				Notes	S			
					BMP EI							p; S = Grassed	

^{*}The upper portion of Reach 6 (893 ft) and the side channel (307 ft) that confluences with it were given a 50 ft buffer and are included in the easement to account for hydrologic impacts. No credit was generated from these channels.

Table 2. Project Activity and Reporting History

Project Activity and Reporting History Muddy Run II Stream and Wetland Restoration / NCDMS Project #95354							
Activity or Report	Data Collection Complete	Completion or Delivery					
Mitigation Plan	NA	January 2014					
Final Design – Construction Plans	NA	March 2014					
Construction Completed	NA	May 2014					
Site Planting Completed	NA	May 2014					
Baseline Monitoring Document (Year 0 Monitoring – baseline)	June 2014	August 2014					
Year 1 Monitoring	December 2014	December 2014					
Year 2 Monitoring	December 2015	February 2016					
Adaptive Management Repair and Supplemental Replanting*		April 2016					
Invasive Species Control		October 2016					
Year 3 Monitoring	November 2016	February 2017					
Year 4 Monitoring	November 2017	February 2018					
Structure Repair and Addressing Bare Area/Encroachment		June 2018					
Year 5 Monitoring	XS: June 2018 VP: October 2018	November 2018					
Beaver Management		February 2019					
Year 6 Monitoring	XS 52-55: July 2019 VP: October 2019	January 2020					


^{*4,400} trees


Table 3. Project Contacts

	Project Contacts Table					
Muddy Run II Stream and Wetland Restoration /NCDMS Project # 95354						
Designer	WK Dickson and Co., Inc.					
	720 Corporate Center Drive					
	Raleigh, NC 27607					
	(919) 782-0495					
	Frasier Mullen, PE					
Construction Contractor	GP Jenkins 6566 HWY 55 W Kinston, NC 28504 (252) 569-1222 Gary Jenkins					
Planting Contractor	H&J Forestry Matt Hitch					
Seeding Contractor	Rain Services, Inc. Lupe Cruz					
Seed Mix Sources	Green Resource					
Nursery Stock Suppliers	Arbogen					
Full Delivery Provider	Resource Environmental Solutions, LLC 302 Jefferson Street, Suite 110 Raleigh, NC 27605 (919) 209-1062					
Project Manager:	Brad Breslow					
Monitoring Performers	Resource Environmental Solutions, LLC 302 Jefferson Street. Suite 110 Raleigh, NC 27605 (919) 741-6268					
Project Manager:	Ryan Medric					

Table 4. Project Information

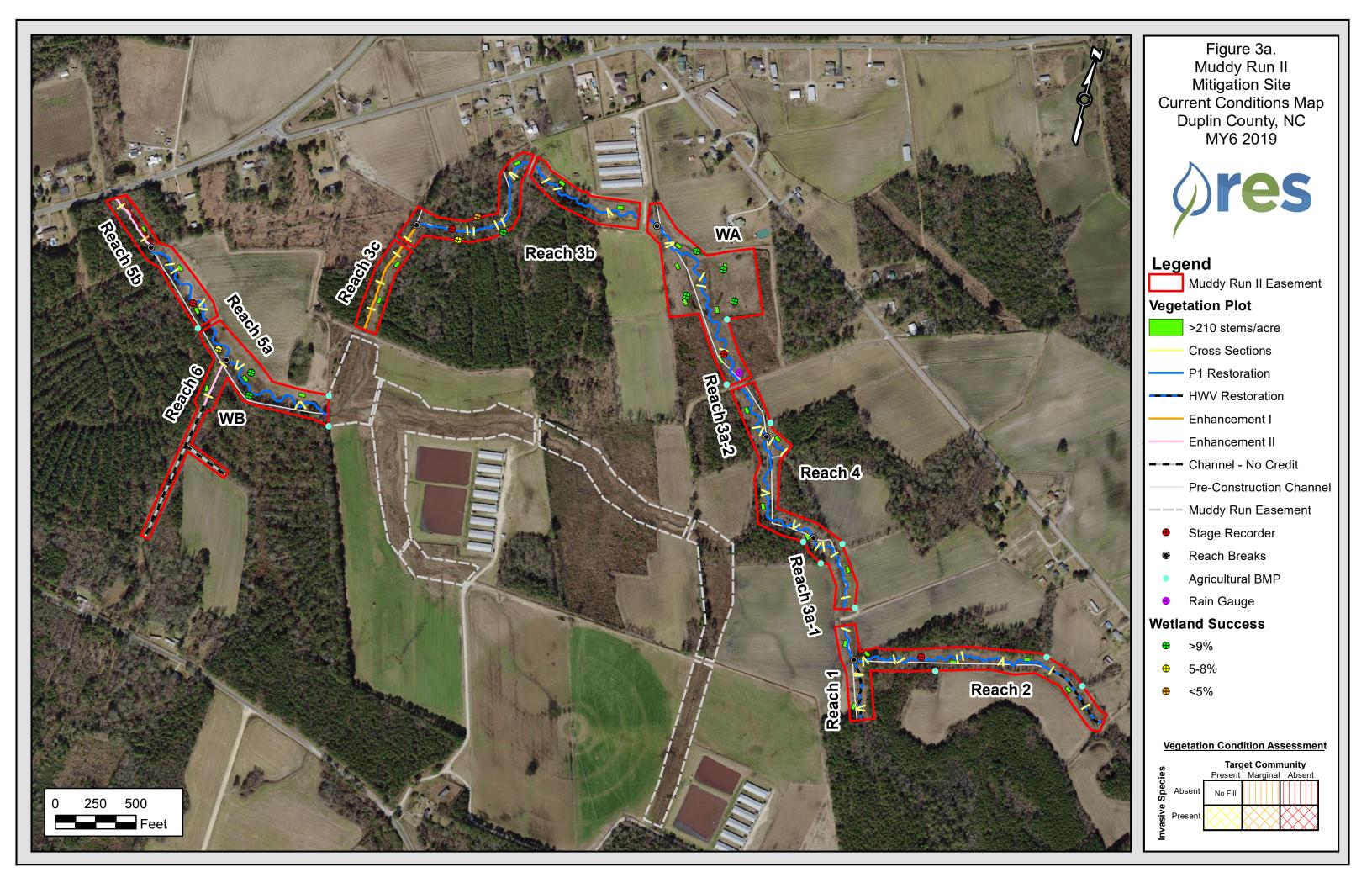
Table 4. Troject init	oi iiia	tion										
			1	Project Information								
Project Name				Muddy Run II Stream and Wetland Restoration								
County				Duplin								
Project Area (acres)				37.6								
Project Coordinates (latitude	and lor	ngitude)		34.830843	N,-77.7	9283	8 º W					
,		8 /	Projec									
Physiographic Province				ect Watershed Summary Information Coastal Plain								
River Basin				Cape Fear								
USGS Hydrologic Unit 8-				USGS Hydrol	ogic							
digit	03030	0007		Unit 14-digit	0.	30300)7060	010				
DWQ Sub-basin				03-06-22								
Project Drainage Area (acres				908								
Project Drainage Area Perce		f Impervio	us Area	<1%								
CGIA Land Use Classificati	on			Dooch Sumr	nary Infor	nation						
Parameters		Reach 1	Reach 2	Reach Sumr	Reach 3b		ch 3c	Reach	4 Reach 5a	Reach 5b	Reach 6	
Length of Reach (linear feet)	398	1914	3586	1979	_	08	173	1926	409	318	
Valley Classification	,											
Drainage Area (acres)		68	114	227	333	3	70	46	774	908	77	
NCDWQ Stream Identificat	ion	24.75	24.75	36.5	NA	4	0.5	32.0	35.5	37.5	20.75	
NCDWQ Water Quality		NA	NA	NA	NA	N	ĪΑ	NA	NA	NA	NA	
Morphological Description (stream											
Evolutionary Trend												
Underlying Mapped Soils		Rains	Rains	Goldsboro/ Rains	Goldsboro/ Rains		sboro/ ains	Goldsbor Rains	ro/ Goldsboro / Rains	Goldsboro	Goldsboro / Rains	
Drainage Class						-						
Soil Hydric Status		Hydric	Hydric	Hydric	Hydric	,	dric	Hydric	Hydric	Hydric	Hydric	
Slope		0.0043	0.0021	0.0016	0.0023		0022	0.0034		0.0015	0.0024	
FEMA Classification		Zone X	Zone X	Zone X	Zone X		ne X	Zone X		Zone X	Zone X	
Native Vegetation Commun	_	22/	00/		Coastal Pla	T					00/	
Percent Composition of Exo	tic	0%	0%	0%	0%	0	%	0%	0%	0%	0%	
				Vetland Sum			n					
	<u>meter</u>	'S		Wetland A 3.60					v	Vetland B 1.32		
Size of Wetland (acres)						Riparian						
Wetland Type (non-riparian Mapped Soil Series	, прапа	n riverine (ог прапап		Goldsł			Riparian Rains				
Drainage class					Moderate		e11			Poorly		
Soil Hydric Status					Yes	•				Yes		
Source of Hydrology				Rur	noff/Overl		Flows		Runoff/C	Overbank F	lows	
Hydrologic Impairment					ched/Incis					Incised Cha		
Native vegetation communit	ty				Cultiv				Cultivated			
Percent composition of exot		ive vegetat	ion		NA					NA		
				Regulator	y Considerati	ons						
		Applica	ble?	Resolved?		Support	ing Documen	tation				
Waters of the United States	– Sectio	on 404			X		X		USACE NWP 27			
Waters of the United States		X		X		401 Water Quality Cert.						
Endangered Species Act		X		X		USFWS (Corr. Letter)						
Historic Preservation Act					X		X		SHPO (Corr. Letter)			
Coastal Zone Management Act		/ Coastal Ar	ea Managen	nent Act (CAMA)) N/A	4	N	J/A	N/A			
FEMA Floodplain Complian	nce				3.77			T / A		3.7/+		
Essential Fisheries Habitat		N/A	· ·	N/A		N/A						

Appendix B

Visual Assessment Data

Figure 3a-c. Current Conditions Plan View Map (CCPV)

Table 5. Visual Stream Morphology Stability Assessment


Table 6. Vegetation Condition Assessment

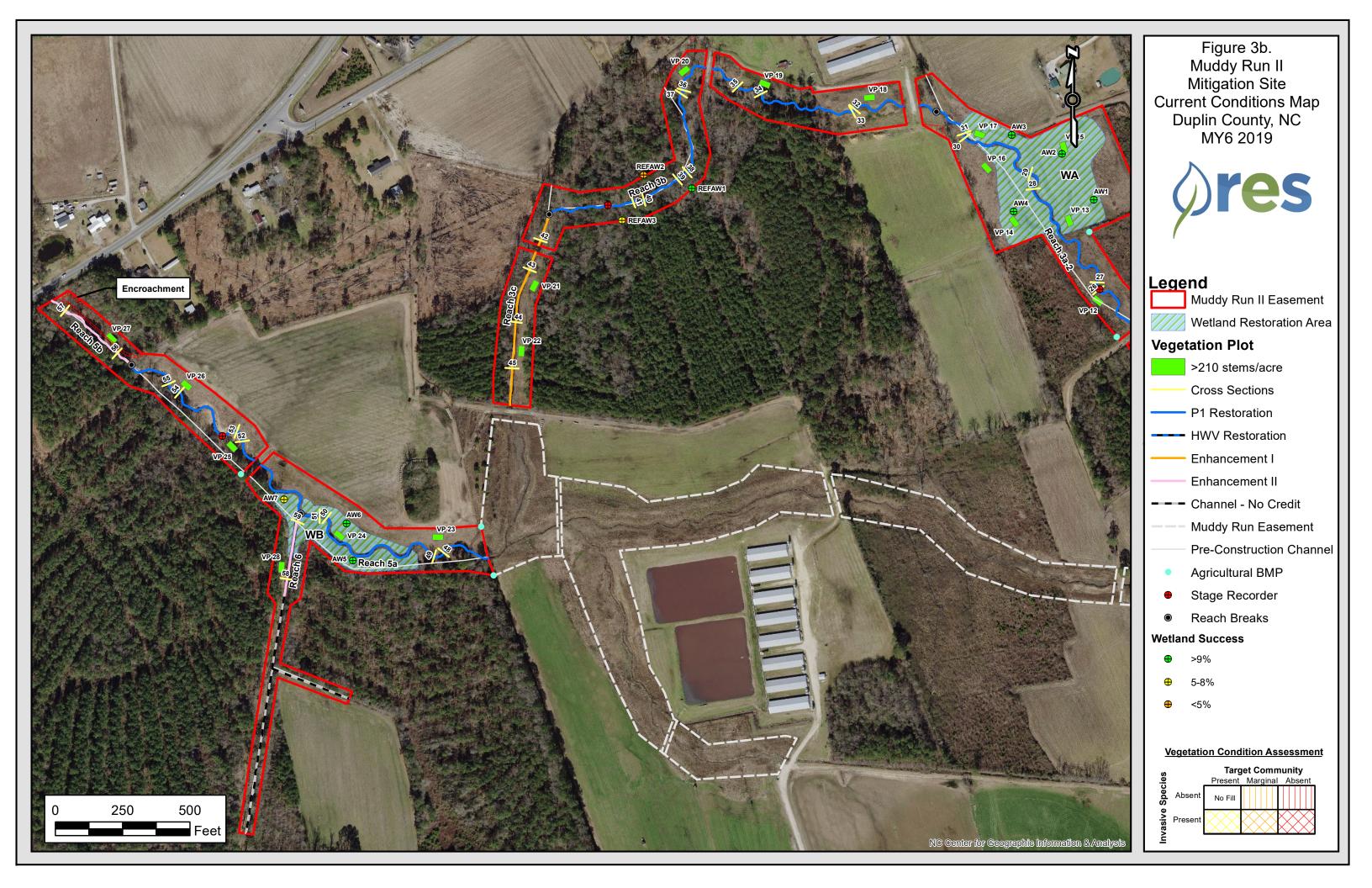

Table 7. Stream Problem Areas

Table 8. Vegetation Problem Areas

Figure 4. Vegetation Photos

Figure 5. Stream and Vegetation Problem Photos

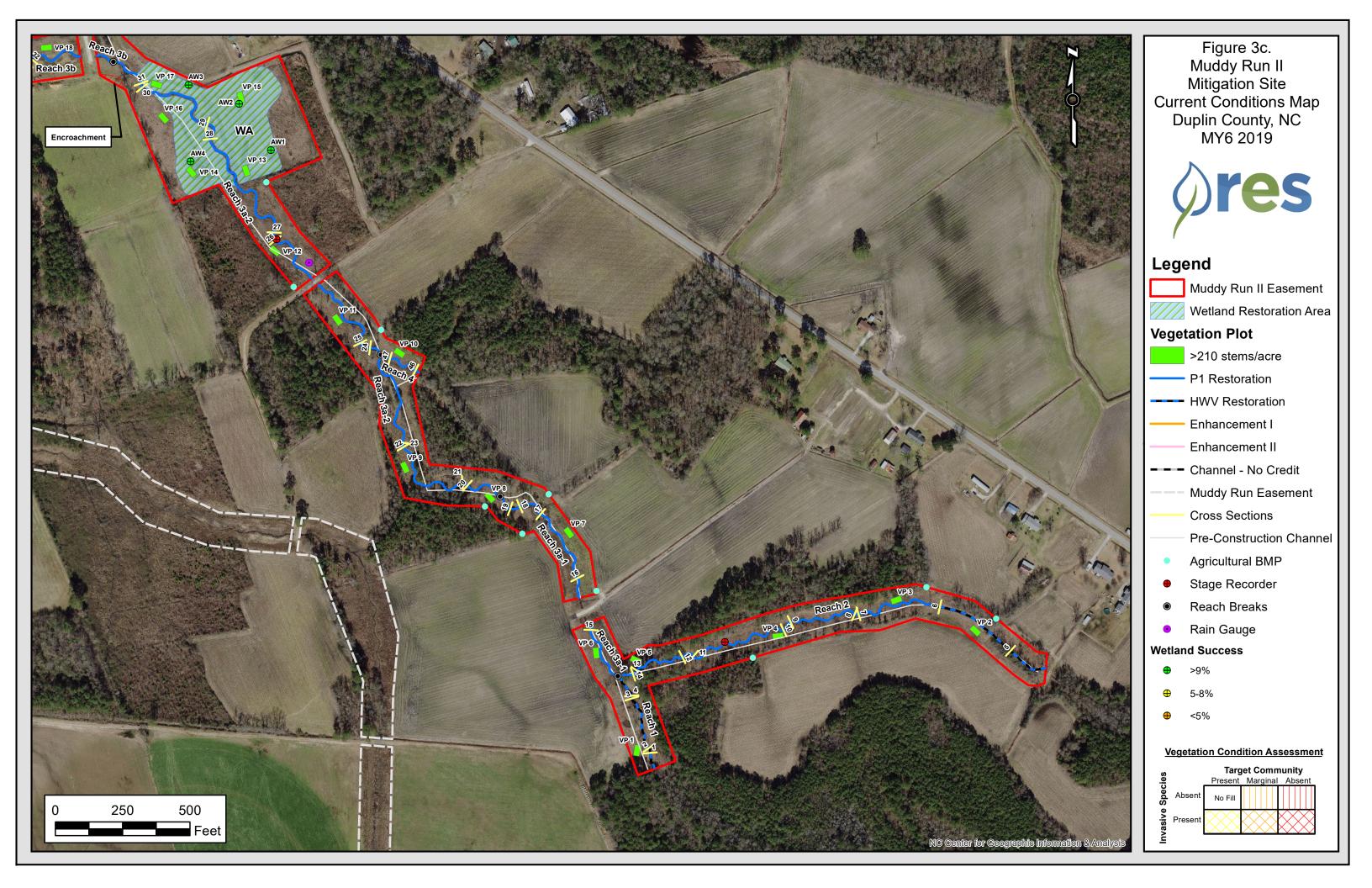


Table 5a <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Reach 1

398

Assessed Length

Adjusted % Footage Number 1 Number with with for % Stable 2. Stabilizing Major Stable. Total 1 Number of Amount of Stabilizing Stabilizing Performing Channel Channel Performing Number in Unstable Unstable Woody Woody Woody Category Sub-Category as Intended As-built Footage as Intended Vegetation Vegetation Vegetation Metric Segments 1. Vertical Stability Aggradation - Bar formation/growth sufficient to significantly deflect 1. Bed 0 100% (Riffle and Run units) low laterally (not to include point bars) 0 O 100% Degradation - Evidence of downcutting NA NA 100% 2. Riffle Condition <u>Texture/Substrate</u> - Riffle maintains coarser substrate 3. Meander Pool Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) NA NA 100% Condition Length appropriate (>30% of centerline distance between tail of NA NA 100% pstream riffle and head of downstrem riffle) 4.Thalweg Position 1. Thalweg centering at upstream of meander bend (Run) NA NA 100% 2. Thalweg centering at downstream of meander (Glide) NA NA 100% Bank lacking vegetative cover resulting simply from poor growth and/or . Scoured/Eroding 2. Bank 0 0 100% 0 0 100% scour and erosion Banks undercut/overhanging to the extent that mass wasting appears 0 0 100% 0 0 likely. Does NOT include undercuts that are modest, appear 100% 2. Undercut sustainable and are providing habitat. 0 0 B. Mass Wasting Bank slumping, calving, or collapse 0 100% 0 100% Totals 0 0 100% 0 0 100% 3. Engineered 4 Overall Integrity Structures physically intact with no dislodged boulders or logs. 4 100% Structures 2. Grade Control 4 100% Grade control structures exhibiting maintenance of grade across the sill. 4 4 4 100% 2a. Piping Structures lacking any substantial flow underneath sills or arms. Bank erosion within the structures extent of influence does not exceed 0 0 . Bank Protection 15%. (See guidance for this table in EEP monitoring guidance 100% document) Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull 0 4. Habitat 0 100% Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 5bVisual Stream Morphology Stability AssessmentReach IDReach 2Assessed Length1914

Major Channel Category	Channel Sub-Category	Metric	Number ¹ Stable, Performing as Intended	Total ¹ Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable ² , Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	NA	NA			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	NA	NA			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	NA	NA			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	NA	NA			100%			
		Thalweg centering at downstream of meander (Glide)	NA	NA			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	14	14			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	13	13			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	14	14			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			100%			
	4. Habitat	Pool forming structures maintaining ∼ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 5cVisual Stream Morphology Stability AssessmentReach IDReach 3AAssessed Length3586

Major Channel Category	Channel Sub-Category	Metric	Number ¹ Stable, Performing as Intended	Total ¹ Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable ² , Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	NA	NA			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	NA	NA			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	NA	NA			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	NA	NA			100%			
		Thalweg centering at downstream of meander (Glide)	NA	NA			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	21	21			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	11	11			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	21	21			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	1	1			100%			
	4. Habitat	Pool forming structures maintaining ∼ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 5d Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Reach 3B 1979

Major Channel Category	Channel Sub-Category	Metric	Number ¹ Stable, Performing as Intended	Total ¹ Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable ² , Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	NA	NA			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	NA	NA			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	NA	NA			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	NA	NA			100%			
		Thalweg centering at downstream of meander (Glide)	NA	NA			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	17	17			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	9	9			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	17	17			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	1	1			100%			
	4. Habitat	Pool forming structures maintaining ∼ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	7	7			100%			

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 5eVisual Stream Morphology Stability AssessmentReach IDReach 3CAssessed Length708

Major Channel Category	Channel Sub-Category	Metric	Number ¹ Stable, Performing as Intended	Total ¹ Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable ² , Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	NA	NA			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	NA	NA			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	NA	NA			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	NA	NA			100%			
		2. Thalweg centering at downstream of meander (Glide)	NA	NA			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			100%			
	4. Habitat	Pool forming structures maintaining ∼ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 5f <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Reach 4
Assessed Length 173

Major Channel Category	Channel Sub-Category	Metric	Number ¹ Stable, Performing as Intended	Total ¹ Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable ² , Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	NA	NA			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	NA	NA			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	NA	NA			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	NA	NA			100%			
		2. Thalweg centering at downstream of meander (Glide)	NA	NA			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			100%			
	4. Habitat	Pool forming structures maintaining ∼ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	1	1			100%			

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 5g <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Reach 5A

Assessed Length 1926

Major Channel Category	Channel Sub-Category	Metric	Number ¹ Stable, Performing as Intended	Total ¹ Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable ² , Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	NA	NA			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	NA	NA			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	NA	NA			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	NA	NA			100%			
		Thalweg centering at downstream of meander (Glide)	NA	NA			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	22	22			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	16	16			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	22	22			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 5h Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

Reach 5B 409

Major Channel Category	Channel Sub-Category	Metric	Number ¹ Stable, Performing as Intended	Total ¹ Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable ² , Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	NA	NA			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	NA	NA			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	NA	NA			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	NA	NA			100%			
		Thalweg centering at downstream of meander (Glide)	NA	NA			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			100%			
	4. Habitat	Pool forming structures maintaining ∼ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	0	0			100%			

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 5aVisual Stream Morphology Stability AssessmentReach IDReach 6Assessed Length318

Major Channel Category	Channel Sub-Category	Metric	Number ¹ Stable, Performing as Intended	Total ¹ Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable ² , Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Stabilizing Woody
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	NA	NA			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	NA	NA			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	NA	NA			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	NA	NA			100%			
		Thalweg centering at downstream of meander (Glide)	NA	NA			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			100%			
	4. Habitat	Pool forming structures maintaining ∼ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	0	0			100%			

¹ Bed - Coastal plain sand bed channels have a mobile bed along their entire length during geomorphically significant flows. Therefore, the number of shallows and pools, bedform shape, and thalweg position will vary by monitoring event and are not suitable indicators of stability or function.

² Percentage based on visual assessment of channel bed condition.

Table 6

Vegetation Condition Assessment

Planted Acreage

T lantou / torougo	17						
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage	
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Red Lines	0	0.00	0.0%	
2. Low Stem Density Areas	Low Stem Density Areas Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria. 0.1 acres Orange L						
			Total	0	0.00	0.0%	
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Orange Lines	0	0.00	0.0%	
	mulative Total	0	0.00	0.0%			

Easement Acreage²

37.6

17

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000 SF	Yellow Crosshatch	0	0.00	0.0%
5. Easement Encroachment Areas³	Areas or points (if too small to render as polygons at map scale).	none	Red Lines	1	0.10	0.6%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but the planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, density or distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend i

	Table 7. Stream Problem Areas										
Muddy I	Muddy Run II Stream and Wetland Restoration Project - Project # 95354										
Feature Issue	Feature Issue Station # / Range Suspected Cause; Repair Photo Number										
N/A	N/A	N/A	N/A								

Table 8. Vegetation Problem Areas Muddy Run II Stream and Wetland Restoration Project - Project # 95354									
Feature Category	Station Numbers	Suspected Cause; Repair	Photo Number						
Encroachment	RB Reach 5b	Fire plow; Natural regeneration	VPA1						
Encroachment	WA	Mowing; Physical barrier	VPA2						

Figure 4. Vegetation Plot Photos

Vegetation Plot 25

Vegetation Plot 26

Vegetation Plot 27

Vegetation Plot 28

Figure 5. Stream and Vegetation Problem Area Photos

Stream Problem Area Photos

N/A

Vegetation Problem Areas Photos

Encroachment along the right bank of Reach 5b

Appendix C

Vegetation Plot Data

Table 9a. Planted Stem Count Summary

Table 9b. Planted Species Totals

Table 9c. Planted Stem Counts (Species by Plot)

Table 9a. Monitoring Year 6 Stem Count Summary

Table 7a. M		Baseline		Year 1			Year 2				Year 3				Year 4				Year 5				Year 6	
		Planted	P	lanted	1	Planted		Volunteers		Planted	Vo	olunteers]	Planted	Volu	nteers]	Planted	Volun	teers]	Planted	Volunt	teers
Vegetation Plot	Stems Planted	Stems/Acre Baseline	Living Stems	Stems/Acre Year 1	Living Stems	Stems/Acre Year 2	Living Stems	Total Stems/Acre Year 2	Living Stems	Stems/Acre Year 3	Living Stems	Total Stems/Acre Year 3	Living Stems	Stems/Acre Year 3	Living Stems	Total Stems/Acre Year 4	Living Stems	Stems/Acre Year 5	Living Stems	Total Stems/Acre Year 5	Living Stems	Stems/Acre Year 5	Living Stems	Total Stems/Acre Year 5
1	16	800	16	800	0	0	1	750	13	650	50	3150	13	650	186	9950	13	650	86	4950	12	600	2	700
2	17	850	14	700	0	0		550	11	550	0	550	11	550	43	2700	11	550	9	1000	11	550	0	550
3	15	750	13	650	0	0		550	11	550	0	550	10	500	53	3150	9	450	6	750	9	450	4	650
4	14	700	12	600	0	0		400	13	650	5	900	13	650	34	2350	13	650	6	950	13	650	0	650
5	16	800	12	600	0	0		500	11	550	0	550	13	650	21	1700	13	650	2	750	13	650	6	950
6	17	850	14	700	0	0		650	13	650	0	650	13	650	7	1000	13	650	0	650	13	650	0	650
7	15	750	13	650	0	0		600	12	600	0	600	12	600	0	600	12	600	0	600	12	600	0	600
8	16	800	14	700	0	0		600	13	650	0	650	13	650	63	3800	13	650	131	7200	13	650	6	950
9	17	850	11	550	10	500		500	17	850	0	850	13	650	7	1000	12	600	2	700	13	650	5	900
10	14	700	9	450	0	0	1	350	6	300	1	350	8	400	2	500	8	400	0	400	8	400	1	450
11	13	650	13	650	0	0		550	11	550	0	550	12	600	19	1550	10	500	0	500	10	500	4	700
12	15	750	9	450	0	0		550	13	650	0	650	13	650	3	800	13	650	0	650	13	650	0	650
13	16	800	14	700	0	0		650	14	700	0	700	13	650	16	1450	13	650	38	2550	13	650	2	750
14	14	700	10	500	0	0		500	9	450	0	450	9	450	129	6900	9	450	23	1600	9	450	4	650
15	15	750	13	650	13	650	5	900	19	950	0	950	20	1000	65	4250	20	1000	12	1600	20	1000	7	1350
16	16	800	15	750	0	0		700	12	600	0	600	12	600	71	4150	12	600	73	4250	12	600	1	650
17	15	750	10	500	11	550	1	600	12	600	0	600	12	600	7	950	12	600	4	800	14	700	0	700
18	14	700	14	700	13	650	1	700	14	700	0	700	14	700	71	4250	13	650	45	2900	13	650	0	650
19	9	450	8	400	0	0		550	13	650	0	650	9	450	168	8850	9	450	48	2850	9	450	10	950
20	10	500	7	350	0	0		250	8	400	1	450	8	400	76	4200	8	400	0	400	8	400	2	500
21	18	900	16	800	15	750		750	12	600	0	600	13	650	12	1250	13	650	4	850	13	650	0	650
22	16	800	13	650	12	600		600	11	550	0	550	11	550	23	1700	11	550	18	1450	11	550	0	550
23	13	650	11	550	12	600		600	14	700	35	2450	14	700	60	3700	15	750	66	4050	15	750	12	1350
24	17	850	11	550	8	400		400	8	400	0	400	8	400	33	2050	8	400	39	2350	8	400	10	900
25	16	800	12	600	11	550		550	21	1050	0	1050	21	1050	4	1250	20	1000	0	1000	15	750	0	750
26	11	550	7	350	6	300		300	20	1000	34	2700	18	900	64	4100	17	850	3	1000	15	750	11	1300
27	19	950	17	850	16	800		800	16	800	0	800	16	800	12	1400	16	800	7	1150	13	650	0	650
28	17	850	17	850	15	750		750	14	700	0	700	15	750	68	4150	15	750	0	750	15	750	0	750
Average	15.0	752	12.3	616	5.1	254	2	577	12.9	645	5	870	12.8	638	47	2989	12.5	627	22	1738	12.3	613	3	768
Min	9	450	7	350	0	0	1	250	6	300	0	350	8	400	0	500	8	400	0	400	8	400	0	450
Max	19	950	17	850	16	800	5	900	21	1050	50	2700	21	1050	186	9950	20	1000	131	7200	20	1000	12	1350

* Calculations include volunteer species Plot Size = 40 X 22 feet = 0.020 Acres Number Trees/Acres = # of Trees * 50

Table 9b. Planted Species Totals

Tuble > bi Tiunted Species Totals										
		Total								
Species	Common Name	Planted								
Trees -	Bare Root									
Taxodium distichum	Bald Cypress	1,800								
Fraxinus pennsylvanica	Green Ash	1,900								
Quercus lyrata	Overcup Oak	1,800								
Betula nigra	River birch	1,800								
Quercus michauxii	Swamp Chestnut Oak	2,200								
Nyssa biflora	Swamp Tupelo	2,000								
Plantanus occidentalis	American Sycamore	2,200								
Quercus laurifolia	Laurel Oak	1,800								
	Total	15,500								

Live Stakes								
Salix nigra	Black Willow	3,000						
	Total	3,000						

Table 9c. Planted Stem Counts (Species by Plot)

				e tation ?	Plot 1					Vege	tation l	Plot 2					Vege	etation	Plot 3					Vege	tation 1	Plot 4					Veg	e tation	Plot 5			
Species	Common Name	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6
Taxodium distichum	Bald Cypress	3	3	2	2	2	2	2															1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fraxinus pennsylvanica	Green Ash																						5	5	9	9	9	9	9	1	1	1	1	1	1	1
Quercus sp.	Unknown Oak sp.								2							2	1						1							1	1					
Quercus lyrata	Overcup Oak								8	8	8	8	8	8	8	4	4	4	4	4	4	4								8	7	8	6	6	8	8
Betula nigra	River birch	6	6	5	5	5	5	4								2														2	1	1	1	1	1	1
Quercus michauxii	Swamp Chestnut Oak	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1								1	1	1	1	1	1	1
Nyssa biflora	Swamp Tupelo								4	4	1	1	1	1	1	3	3	2	3	3	2	2	2	1	1	1	1	1	1							
Plantanus occidentalis	American Sycamore	1	1	1	1	1	1	1								3	3	2	3	2	2	2	5	5	2	2	2	2	2				1	1	1	1
Quercus laurifolia	Laurel Oak	4	4	3	3	3	3	3	1								1													2				2		
Quercus nigra	Water Oak																																			
Quercus phellos	Willow Oak																																			
Liriodendron tulipifera	Tulip poplar																																			
	Species Count	5	5	5	5	5	5	5	5	3	3	3	3	3	3	6	6	4	4	4	4	4	5	4	4	4	4	4	4	7	6	5	6	7	6	6
	Stem Count	16	16	13	13	13	13	12	17	14	11	11	11	11	11	15	13	9	11	10	9	9	14	12	13	13	13	13	13	16	12	12	11	13	13	13
	Stems per Acre	800	800	650	650	650	650	600	850	700	550	550	550	550	550	750	650	450	550	500	450	450	700	600	650	650	650	650	650	800	600	600	550	650	650	650

				Veg	e tation	Plot 6					Veg	etation	Plot 7					Vege	etation	Plot 8					Vege	tation l	Plot 9					Vege	tation F	lot 10		
Species	Common Name	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6
Taxodium distichum	Bald Cypress	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5				1										
Fraxinus pennsylvanica	Green Ash								2	2	2	2	2	2	2																			1	1	1
Quercus sp.	Unknown Oak sp.								1							1							1													
Quercus lyrata	Overcup Oak	2	1	2	2	2	2	2	3	3	3	3	3	3	3	2	2	2	2	1	2	2				3	1		1	3	2	2	2	2	2	2
Betula nigra	River birch	3	3	3	3	3	3	3	3	2	2	2	2	2	2								10	6	6	6	6	6	6	3	1	1	1	1	1	1
Quercus michauxii	Swamp Chestnut Oak																																			
Nyssa biflora	Swamp Tupelo								1	1						3	3	2	2	2	2	2								4	2					
Plantanus occidentalis	American Sycamore	1	1	2	3	2	2	2								2	2	2	2	2	2	2	2	1	4	4	4	4	4	1	1	1	1	1	1	1
Quercus laurifolia	Laurel Oak	5	3	1	1	1	1	1								3	2	2	2	3	2	2	4	4	2	3	2	2	2	3	3	3	2	3	3	3
Quercus nigra	Water Oak																																			
Quercus phellos	Willow Oak																																			
Liriodendron tulipifera	Tulip poplar																																			
	Species Count	5	5	5	5	5	5	5	6	5	4	4	4	4	4	6	5	5	5	5	5	5	4	3	3	5	4	3	4	5	5	4	4	5	5	5
	Stem Count	17	14	13	14	13	13	13	15	13	12	12	12	12	12	16	14	13	13	13	13	13	17	11	12	17	13	12	13	14	9	7	6	8	8	8
	Stems per Acre	850	700	650	700	650	650	650	750	650	600	600	600	600	600	800	700	650	650	650	650	650	850	550	600	850	650	600	650	700	450	350	300	400	400	400

				Vege	tation P	Plot 11					Vege	tation l	Plot 12					Vege	tation I	Plot 13					Vege	tation P	lot 14					Vege	tation l	Plot 15		
Species	Common Name	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6
Taxodium distichum	Bald Cypress	2	2	2	2	2	2	2								1	1	1	1	1	1	1	1	1						2	2	3	3	3	3	3
Fraxinus pennsylvanica	Green Ash	2	2	2	2	2	2	2	1	1	1	1	1	1	1	2	2	2	3	2	2	2	3	3	3	3	3	3	3	1	1	1	1	1	1	1
Quercus sp.	Unknown Oak sp.								2							1																				
Quercus lyrata	Overcup Oak					1	1	1	2	2	5	5	5	5	5																					
Betula nigra	River birch	1	1	1	1	1	1	1	3							1	1	1	1	1	1	1	1		3	3	3	3	3	1	1	1	2	2	2	2
Quercus michauxii	Swamp Chestnut Oak								5	5	5	5	5	5	5	7	6	5	5	5	5	5								6	5	3	2	3	3	3
Nyssa biflora	Swamp Tupelo	4	4	1	2	2	1	1								4	4	4	4	4	4	4	9	6	2	2	2	2	2	3	3	1	2	1	1	1
Plantanus occidentalis	American Sycamore	1	1	1	1	1	1	1	2	1	2	2	2	2	2											1	1	1	1	1	1	1	8	7	8	8
Quercus laurifolia	Laurel Oak	3	3	1	3	2	1	1																						1						
Quercus nigra	Water Oak																																			
Quercus phellos	Willow Oak					1	1	1																						1	1	2	1	1	2	2
Liriodendron tulipifera	Tulip poplar																																			
	Species Count	6	6	6	6	7	7	7	6	4	4	4	4	4	4	6	5	5	5	5	5	5	4	3	3	4	4	4	4	8	7	6	7	7	7	7
	Stem Count	13	13	8	11	12	10	10	15	9	13	13	13	13	13	16	14	13	14	13	13	13	14	10	8	9	9	9	9	16	14	10	19	18	20	20
	Stems per Acre	650	650	400	550	600	500	500	750	450	650	650	650	650	650	800	700	650	700	650	650	650	700	500	400	450	450	450	450	800	700	500	950	900	1000	1000

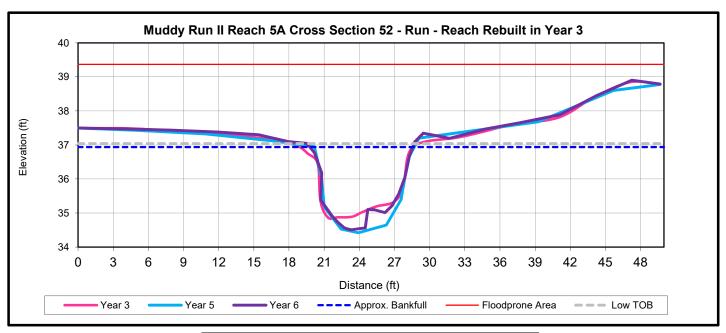
Table 9c. Planted Stem Counts (Species by Plot) Continued

			Vegetation Plot 16 Y0 MY1 MY2 MY3 MY4 MY5 MY6 M					Vege	tation I	lot 17					Vege	tation I	Plot 18					Vege	tation F	Plot 19					Vege	tation I	Plot 20		$\overline{}$			
Species	Common Name	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6
Taxodium distichum	Bald Cypress																						1	1	2	1	2	2	2							
Fraxinus pennsylvanica	Green Ash															6	6	7	6	7	7	7	1			1							2	2	2	2
Quercus sp.	Unknown Oak sp.								1																											
Quercus lyrata	Overcup Oak										4	1	1	1	4	3	3	4	4	4	4	4	1	1	3	1	3	3	3				1			
Betula nigra	River birch								6	4	4	4	4	4	4	1	1	1	1	1	1	1	1	1	3	3	3	3	3				1	1	1	1
Quercus michauxii	Swamp Chestnut Oak	7	7	6	6	6	6	6	1	1	1	1	1	1	1										1	1	1	1	1	2	3	2	2	2	2	2
Nyssa biflora	Swamp Tupelo	8	8	6	6	6	6	6	4	2	2	2	2	2	2	4	4	1	3	2	1	1								6	3	1				
Plantanus occidentalis	American Sycamore								3	3	4	4	4	4	3								5	5	0	5				2	1					
Quercus laurifolia	Laurel Oak	1																															2			
Quercus nigra	Water Oak																																	1	1	1
Quercus phellos	Willow Oak																																	2	2	2
Liriodendron tulipifera	Tulip poplar																																			
	Species Count	3	2	2	2	2	2	2	5	4	5	5	5	5	5	4	4	4	4	4	4	4	5	4	5	6	4	4	4	3	3	2	5	5	5	5
	Stem Count	16	15	12	12	12	12	12	15	10	15	12	12	12	14	14	14	13	14	14	13	13	9	8	9	12	9	9	9	10	7	3	8	8	8	8
	Stems per Acre	800	750	600	600	600	600	600	750	500	750	600	600	600	700	700	700	650	700	700	650	650	450	400	450	600	450	450	450	500	350	150	400	400	400	400

			Vegetation Plot 21 MY1 MY2 MY3 MY4 MY5 MY6 MY6				Vege	tation I	Plot 22					Vege	tation P	lot 23					Vege	tation P	lot 24					Vege	tation l	Plot 25						
Species	Common Name	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6
Taxodium distichum	Bald Cypress	2	3		3	3	3	3	8	8	8	8	8	8	8	2	2	2	3	3	3	3	1	1									4	4	4	4
Fraxinus pennsylvanica	Green Ash	6	6	5	4	5	5	5								7	6	2	6	2	2	2											1	2	2	1
Quercus sp.	Unknown Oak sp.	1														1																	1			
Quercus lyrata	Overcup Oak	3	4	2	3	2	2	2								1	2	2	2	2	2	2		1	1	1	1	1	1					1	1	1
Betula nigra	River birch								3	3	3	3	3	3	3					1	1	1	6	3	3	3	3	3	3	4	3	1	1	1	1	1
Quercus michauxii	Swamp Chestnut Oak	2	2	2	2	2	2	2												1	1	1								5	4	2	2	1	2	2
Nyssa biflora	Swamp Tupelo																			3	2	2	3	3	3	3	3	3	3	6	5	0			0	
Plantanus occidentalis	American Sycamore																		1		1	1	1										7	8	7	3
Quercus laurifolia	Laurel Oak	4	1			1	1	1	5	2	0					2	1	3	2	3	3	3	6	3	1	1	1	1	1	1			5	2	2	2
Quercus nigra	Water Oak																																		1	1
Quercus phellos	Willow Oak																																	1		
Liriodendron tulipifera	Tulip poplar																																			
•	Species Count	6	5	3	4	5	5	5	3	3	3	2	2	2	2	5	4	4	5	7	8	8	5	5	4	4	4	4	4	4	3	3	7	8	9	8
	Stem Count	18	16	9	12	13	13	13	16	13	11	11	11	11	11	13	11	9	14	15	15	15	17	11	8	8	8	8	8	16	12	3	21	20	20	15
	Stems per Acre	900	800	450	600	650	650	650	800	650	550	550	550	550	550	650	550	450	700	750	750	750	850	550	400	400	400	400	400	800	600	150	1050	1000	1000	750

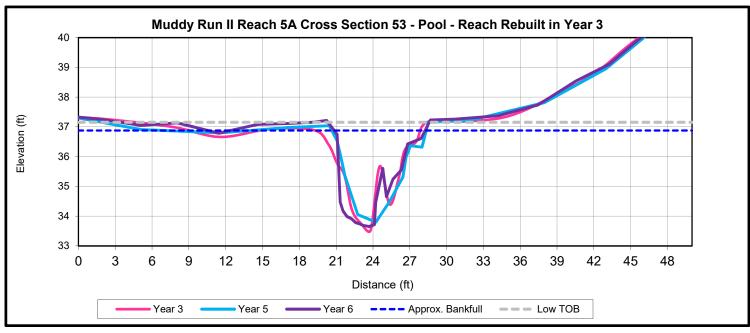
			Vegetation Plot 26 4Y0 MY1 MY2 MY3 MY4 MY5 MY6							Vege	tation P	lot 27					Vege	tation P	lot 28			
Species	Common Name	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY0	MY1	MY2	MY3	MY4	MY5	MY6
Taxodium distichum	Bald Cypress																					
Fraxinus pennsylvanica	Green Ash				4	4	4	4	9	9	9	9	9	9	8							
Quercus sp.	Unknown Oak sp.				4																	
Quercus lyrata	Overcup Oak	4	4	3	5	4	3	3	1							4	4	4	4	4	4	4
Betula nigra	River birch	1			1	1	1	1								1	1	1	1	1	1	1
Quercus michauxii	Swamp Chestnut Oak	2	2	3	3	3	3	3	1	1	1	1	1	1		1	1	1	1	1	1	1
Nyssa biflora	Swamp Tupelo	3	1																			
Plantanus occidentalis	American Sycamore	1			1	1	1		1	1	1	1	1	1	1	7	7	6	6	6	6	6
Quercus laurifolia	Laurel Oak				2	1	1	1	7	6	5	5	4	5	4	4	4	3	2	3	3	3
Quercus nigra	Water Oak					1	1	1														
Quercus phellos	Willow Oak					1	1	1														
Liriodendron tulipifera	Tulip Poplar					2	2	1														
	Species Count	5	3	2	7	9	9	8	5	4	4	4	4	4	3	5	5	5	5	5	5	5
	Stem Count	11	7	6	20	18	17	15	19	17	16	16	15	16	13	17	17	15	14	15	15	15
	Stems per Acre	550	350	300	1000	900	850	750	950	850	800	800	750	800	650	850	850	750	700	750	750	750

Appendix D


Stream Geomorphology Data

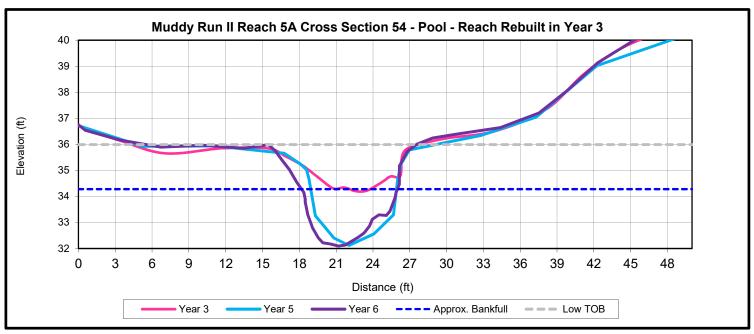
Cross Section Plots 52-55

Upstream Downstream


			Cross S	ection 5	2 (Run))	
	Base	MY1	MY2	MY3*	MY5	MY6	MY7
Bankfull Elevation (ft) - Based on AB-XSA1	39.8	39.8	39.8	37.0	36.8	36.9	
Bankfull Width (ft) ¹	17.7	17.8	19.3	10.6	8.1	8.8	
Floodprone Width (ft)1	50.0	50.0	50.0	50.0	50.0	>49.7	
Bankfull Mean Depth (ft)	1.8	2.1	2.7	1.4	1.8	-	
Bankfull Max Depth (ft) ²	3.1	4.5	5.9	2.1	2.3	2.5	
Low Bank Elevation	-	ì		·	,	37.0	
Bankfull Cross Sectional Area (ft2) ²	31.8	36.9	52.3	14.6	14.6	15.5	
Bankfull Width/Depth Ratio	9.9	8.6	7.1	7.7	4.5		
Bankfull Entrenchment Ratio ¹	>2.2	>2.2	>2.2	>2.2	>6.1	>5.7	
Bankfull Bank Height Ratio ¹	1.0	1.0	1.0	1.0	1.1	1.0	

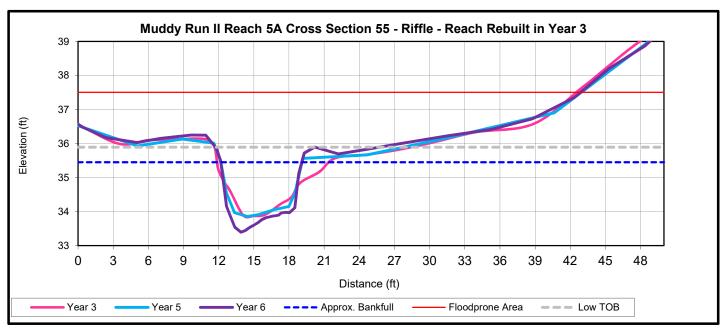
Note: Starting in MY6, the parameters denoted with 1 were calculated using the as-built cross sectional area as the basis for adjusting the bankfull elevation and the parameters denoted with 2 were calculated using the current years low top of bank as the bankfull elevation. These changes reflect the 2018 guidance that arose from the mitigation technical workgroup consisting of DMS, the IRT, and industry mitigation providers.

Upstream Downstream


		C	ross S	ection 5	53 (Poo	ol)	
	Base	MYl	MY2	MY3*	MY5	MY6	MY7
Bankfull Elevation (ft) - Based on AB-XSA	39.7	39.7	39.7	36.9	36.9	36.9	
Bankfull Width (ft)	17.4	17.9	18.1	8.9	7.7	N/A	
Floodprone Width (ft)	50.0	50.0	50.0	50.0	45.0	N/A	
Bankfull Mean Depth (ft)	1.9	2.1	2.2	1.5	1.8		
Bankfull Max Depth (ft) ²	3.5	3.8	4.1	3.4	3.1	3.5	
Low Bank Elevation	-	-	-	-	N/A	37.2	
Bankfull Cross Sectional Area (ft2) ²	33.8	37.1	39.0	13.6	13.6	15.8	
Bankfull Width/Depth Ratio	9.0	8.6	8.4	5.8	4.3	-	
Bankfull Entrenchment Ratio 1	>2.2	>2.2	>2.2	>2.2	N/A	N/A	
Bankfull Bank Height Ratio ¹	1.0	1.0	1.0	1.0	N/A	N/A	

Note: Starting in MY6, the parameters denoted with 1 were calculated using the as-built cross sectional area as the basis for adjusting the bankfull elevation and the parameters denoted with 2 were calculated using the current years low top of bank as the bankfull elevation. These changes reflect the 2018 guidance that arose from the mitigation technical workgroup consisting of DMS, the IRT, and industry mitigation providers.

Upstream Downstream


		C	ross S	ection :	54 (Poo	ol)	
	Base	MYl	MY2	MY3*	MY5	MY6	MY7
Bankfull Elevation (ft) - Based on AB-XSA	38.8	38.8	38.8	35.9	34.4	34.3	
Bankfull Width (ft)	15.7	16.7	20.3	11.5	7.0	N/A	
Floodprone Width (ft) ¹	50.0	50.0	50.0	50.0	34.0	N/A	
Bankfull Mean Depth (ft)	1.7	2.0	2.2	1.0	1.7	-	
Bankfull Max Depth (ft) ²	2.9	4.0	4.4	1.7	2.3	3.9	
Low Bank Elevation	-	-	-	-	N/A	36.0	
Bankfull Cross Sectional Area (ft2) ²	26.1	32.7	45.2	11.7	11.7	27.9	
Bankfull Width/Depth Ratio	9.5	8.5	9.1	11.3	4.2	-	
Bankfull Entrenchment Ratio 1	>2.2	>2.2	>2.2	>2.2	N/A	N/A	
Bankfull Bank Height Ratio 1	1.0	1.0	1.0	1.0	N/A	N/A	

Note: Starting in MY6, the parameters denoted with 1 were calculated using the as-built cross sectional area as the basis for adjusting the bankfull elevation and the parameters denoted with 2 were calculated using the current years low top of bank as the bankfull elevation. These changes reflect the 2018 guidance that arose from the mitigation technical workgroup consisting of DMS, the IRT, and industry mitigation providers.

Upstream Downstream

		Ci	ross Se	ction 5	5 (Riff	le)	
	Base	MYl	MY2	MY3*	MY5	MY6	MY7
Bankfull Elevation (ft) - Based on AB-XSA	38.0	38.0	38.0	35.6	35.7	35.5	
Bankfull Width (ft)	9.7	14.8	20.8	10.2	12.7	6.9	
Floodprone Width (ft)	50.0	50.0	50.0	50.0	43.0	>42.9	
Bankfull Mean Depth (ft)	1.4	2.2	2.1	1.0	0.8		
Bankfull Max Depth (ft) ²	2.2	3.0	3.3	1.7	1.8	2.5	
Low Bank Elevation						35.9	
Bankfull Cross Sectional Area (ft2) ²	13.6	33.3	44.4	10.5	10.5	13.8	
Bankfull Width/Depth Ratio	7.0	6.6	9.7	9.9	15.4	-	
Bankfull Entrenchment Ratio 1	>2.2	>2.2	>2.2	>2.2	>3.4	>6.2	
Bankfull Bank Height Ratio 1	1.0	1.0	1.0	1.0	0.9	1.2	

Note: Starting in MY6, the parameters denoted with 1 were calculated using the as-built cross sectional area as the basis for adjusting the bankfull elevation and the parameters denoted with 2 were calculated using the current years low top of bank as the bankfull elevation. These changes reflect the 2018 guidance that arose from the mitigation technical workgroup consisting of DMS, the IRT, and industry mitigation providers.

Appendix E

Hydrology Data

Table 13. Documentation of Geomorphologically Significant Flow Events

Table 14. Rainfall Summary

Table 15a. Wetland Hydrology Criteria Attainment

Table 15b. Wetland Hydrology Gauges Summary

2019 Groundwater Monitoring Gauge Hydrographs

Crest Gauge Verification Photos

Table 13. Documentation of Geomorphically Significant Flow Events

Stage Recorder	Number of Bankfull Events	Maximum Bankfull Height (ft.)
Stage Recorder 1 (Rea	ach 2)	
MY1 2014	1	0.40
MY2 2015	1	0.60
MY3 2016	4	1.60
MY4 2017	5	1.10
MY5 2018	6	2.45
MY6 2019	0	
Stage Recorder 2 (Rea	ach 3a)	
MY1 2014	8	1.50
MY2 2015	19	2.00
MY3 2016	8	2.00
MY4 2017	7	2.00
MY5 2018	10	3.50
MY6 2019	1	0.63
Stage Recorder 3 (Rea	ach 3b)	
MY1 2014	0	
MY2 2015	4	0.20
MY3 2016	2	2.18
MY4 2017	0	
MY5 2018	1	0.65
MY6 2019	0	
Stage Recorder 4 (Rea	ach 5b)	
MY1 2014	2	0.45
MY2 2015	1	0.40
MY3 2016	1	3.80
MY4 2017	8	2.80
MY5 2018	6	3.75
MY6 2019	5	2.40

Table 14. Rainfall Summary

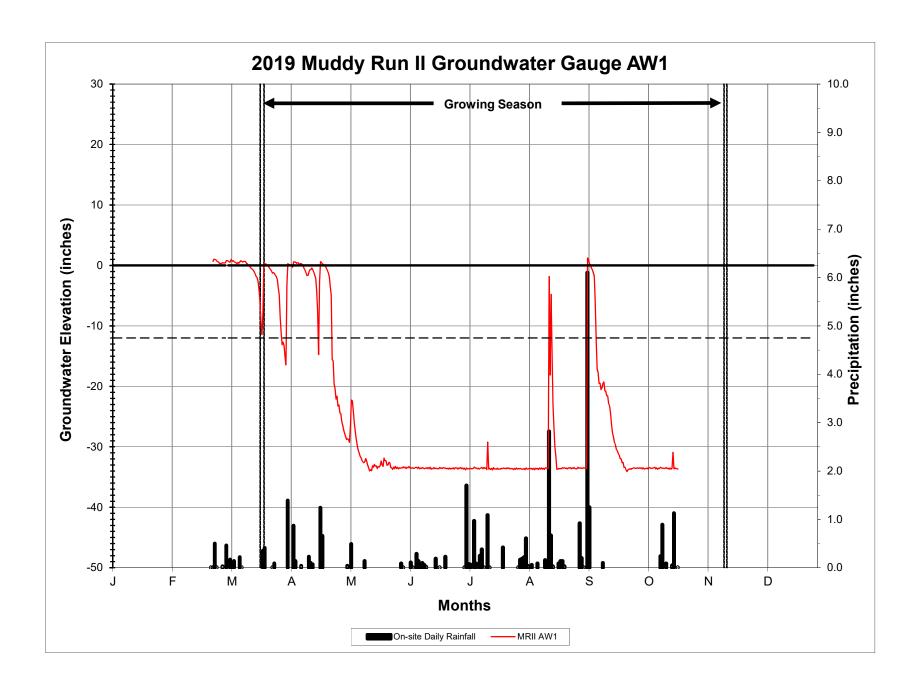
N/I41-	A	Norma	l Limits	Wallace	On-Site Auto
Month	Average	30 Percent	70 Percent	Station	Rain Gauage
January	4.33	3.32	5.03	2.46	
February	3.23	2.14	3.87	2.17	0.56
March	4.50	3.23	5.32	2.67	1.95
April	3.16	1.70	3.85	5.70	4.74
May	3.68	2.69	4.34	1.04	0.76
June	4.49	3.11	5.34	2.32	1.21
July	6.06	4.16	7.22	3.51	5.09
August	5.40	3.12	6.56	5.95	5.52
September	5.00	2.04	6.07	6.8	8.58
October	3.21	1.62	3.92	2.71	2.41
November	2.89	1.83	3.49		
December	3.24	2.14	3.88		
Total	49.19	31.10	58.89	35.33	30.82

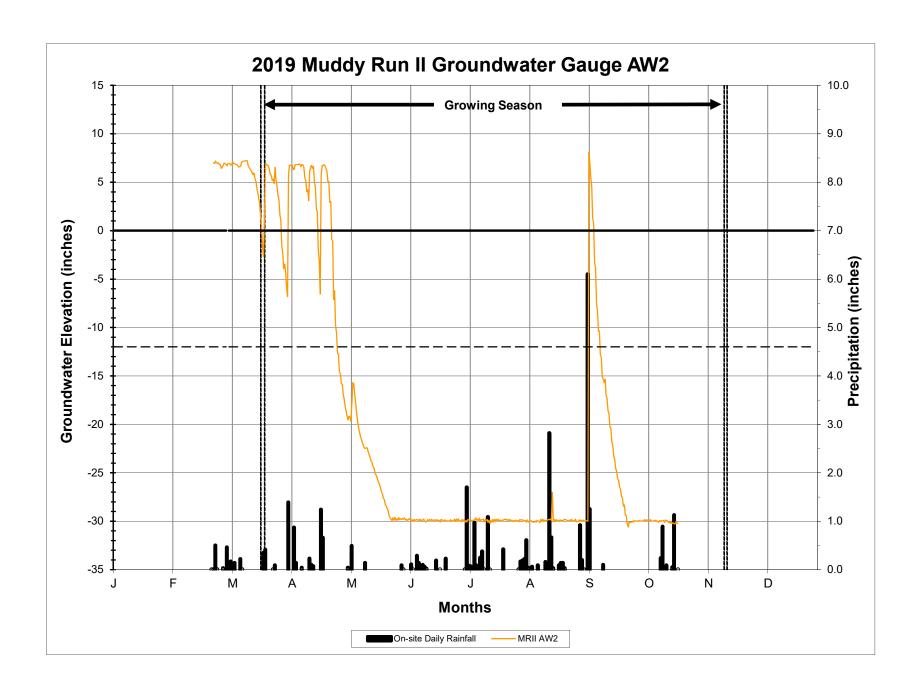
Table 15a. Wetland Hydrology Criteria Attainment

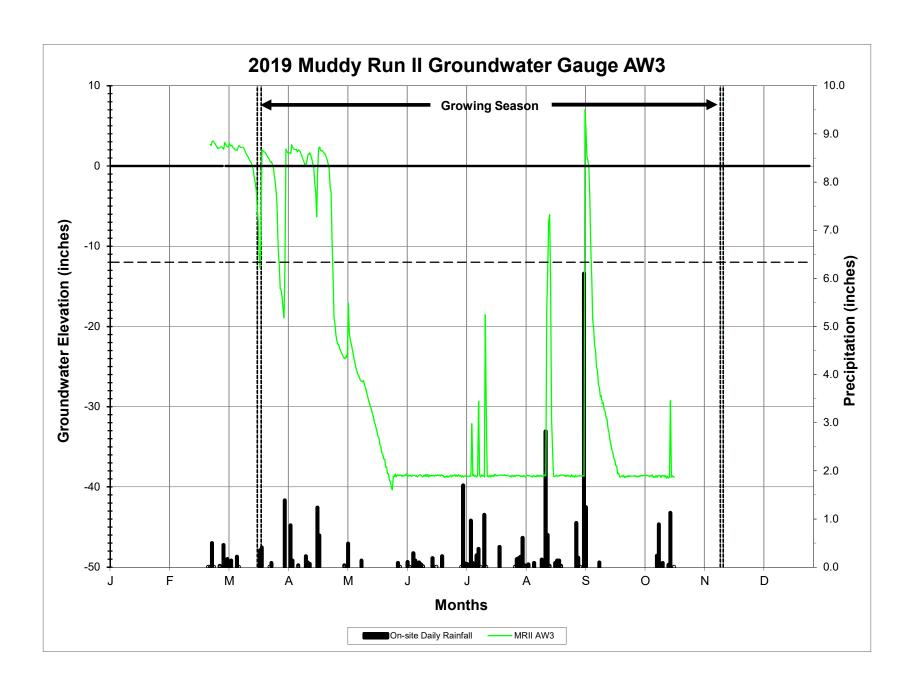
2019 Max Hydroperiod (Growing Season 17-Mar through 14-Nov, 242 days)
Success Criterion 9%

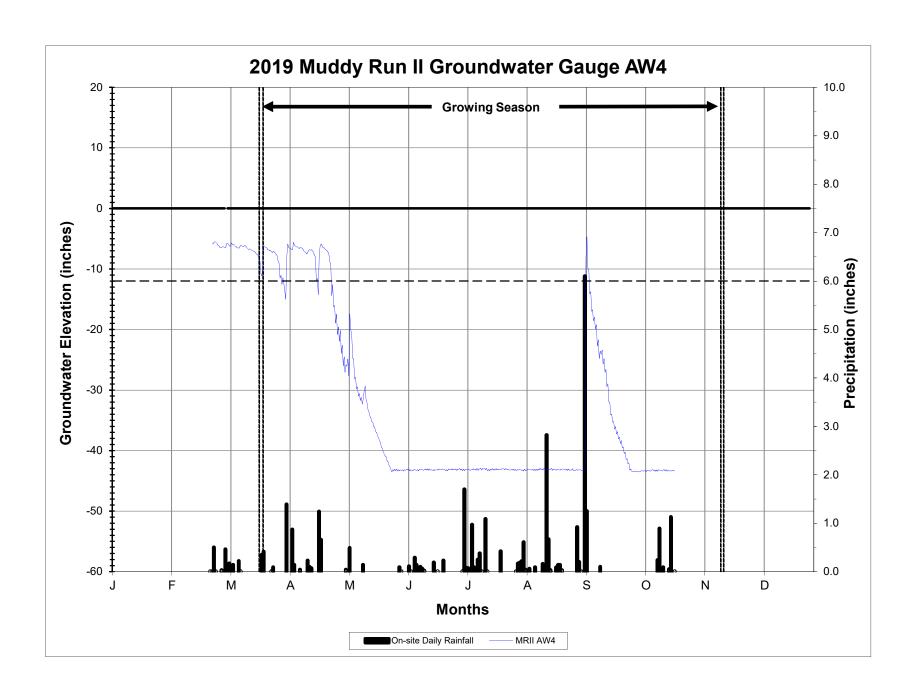
	Conse	cutive	Cumu		
Gauge	Days	Percent of growing Season	Days	Percent of growing Season	Occurrences
AW1	24	10	43	18	4
AW2	42	17	48	20	2
AW3	25	10	42	17	4
AW4	24	10	40	17	3
AW5	28	11	72	30	13
AW6	24	10	73	30	13
AW7	13	5	44	18	9
RAW1	25	10	43	18	3
RAW2	8	3	14	6	4
RAW3	15	6	33	14	5

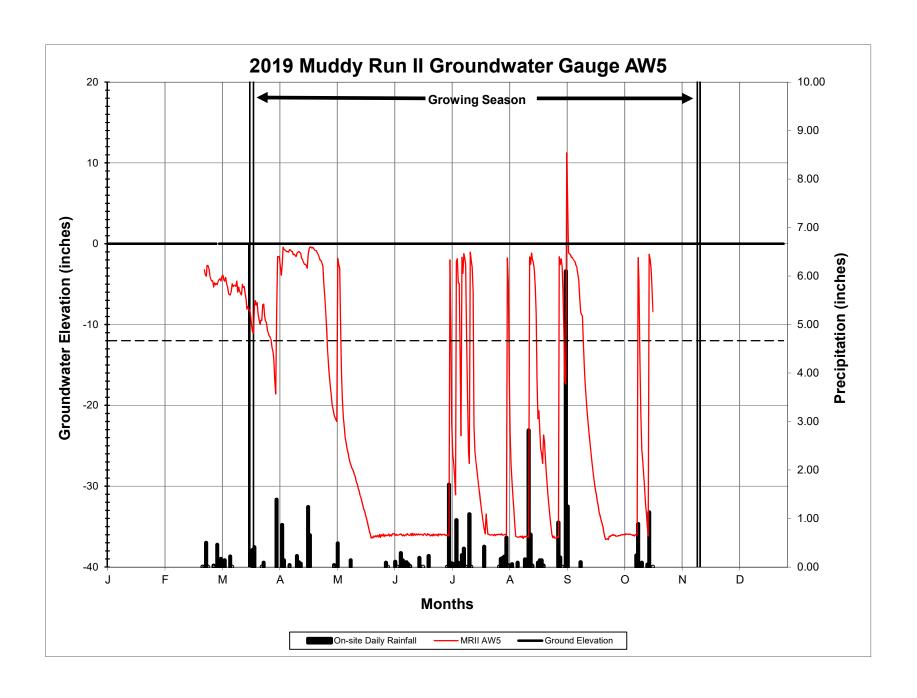
<5%	5-8%	≥9%
-----	------	-----

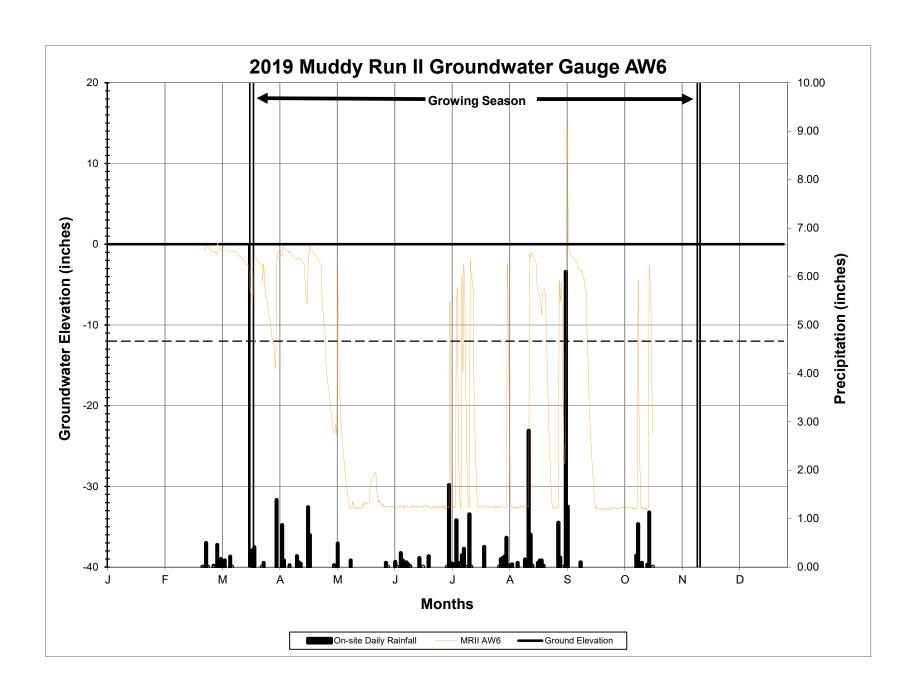

Table 15b. Wetland Hydrology Gauge Summary

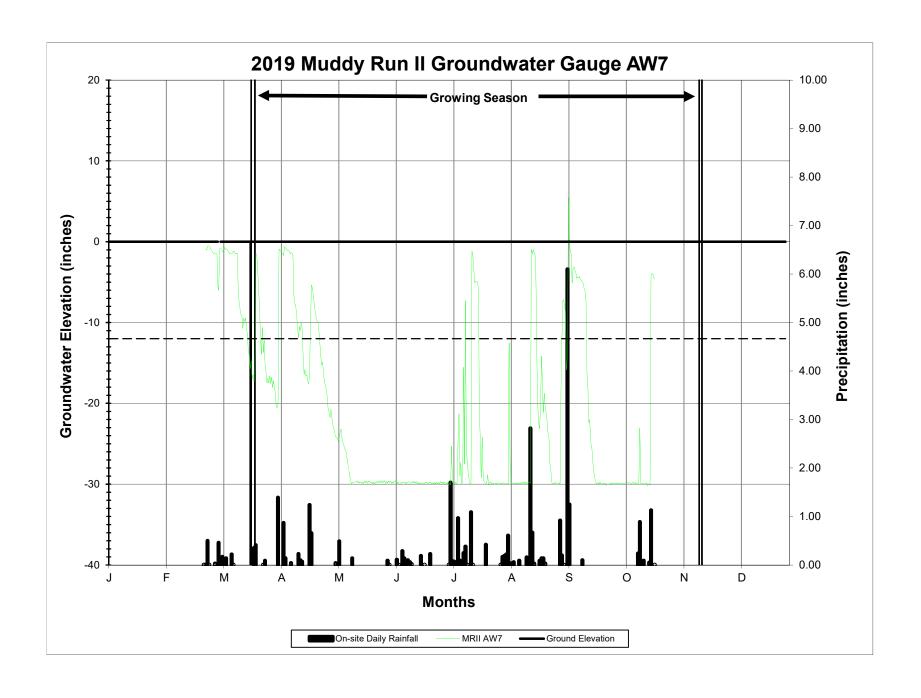

	MY1-2014		MY2-2015		MY3-2016		MY4-2017		MY5-2018**		MY6-2019	
	Consecutive		Consecutive		Consecutive		Consecutive		Consecutive		Consecutive	
Gauge		Percent of										
	Days	growing										
		Season										
AW1	22	9	63	26	22	9	49	20	19	8	24	10
AW2	22	9	41	17	21	9	26	11	46	19	42	17
AW3	13	5	38	16	32	13	52	21	47	19	25	10
AW4	67	28	77	32	95	39	69	28	20	8	24	10
AW5	7	3	38	16	32	13	55	23	49	20	28	11
AW6	43	18	65	27	22	9	55	23	49	20	24	10
AW7	5	2	72	30	36	15	59	24	59	24	13	5
RAW1*	22	9	49	20	33	13	33	13	***	***	25	10
RAW2	10	4	19	8	15	6	6	2	***	***	8	3
RAW3	20	8	41	17	32	13	34	14	46	19	15	6

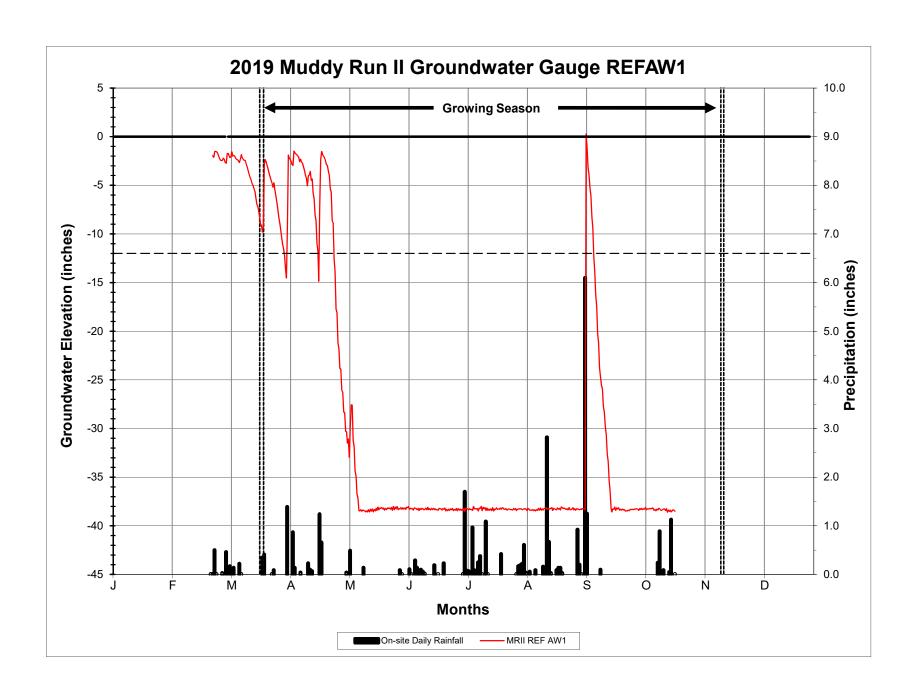

^{*}MY4-2017 data only represents March 17, 2017 - May 2, 2017

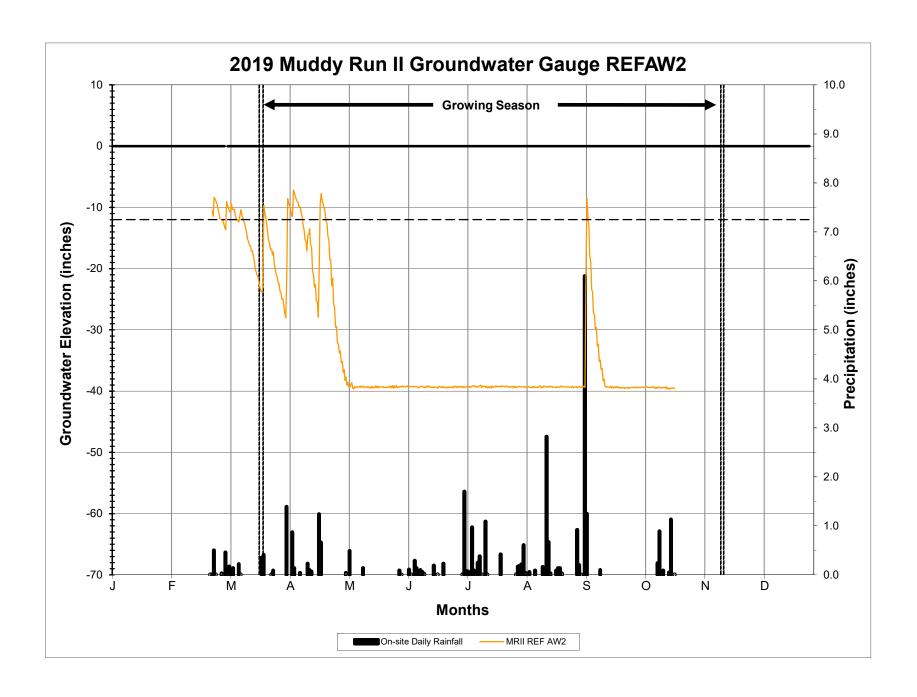

^{**}Gauge data after June 7, 2018 was determined to be unreliable due to inconsitent ambient pressure data

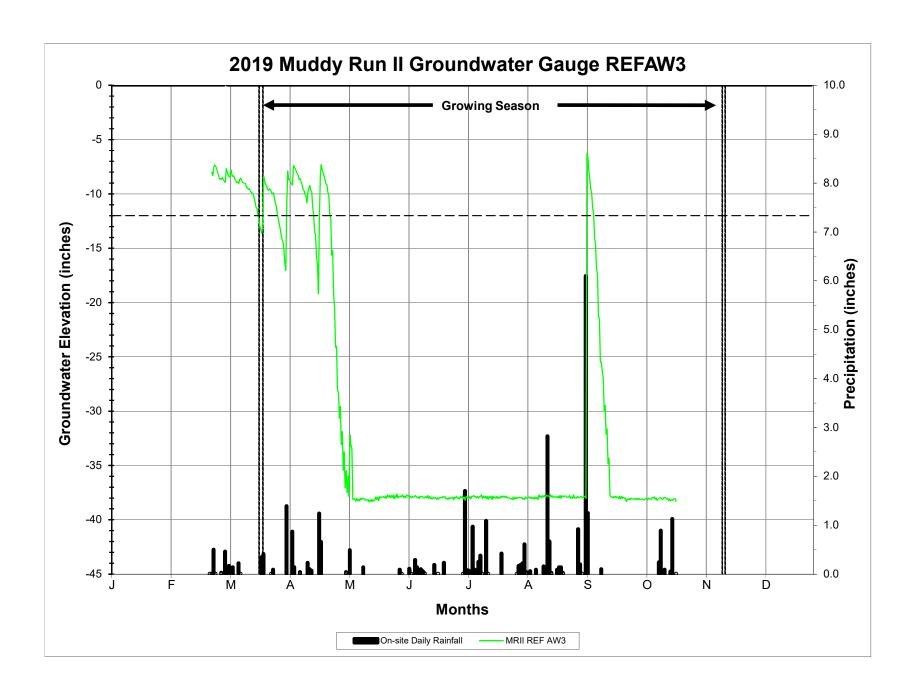

^{***}Gauge malfunctioned in 2018











Appendix E – Crest Gauge Verification Photos

Photo 1. Crest Gauge 2 (Reach 3a – 0.63 ft. – 9/5/2019)

Photo 2. Crest Gauge 4 (Reach 5b – 2.40 ft. – 9/5/2019)